
Better, Faster, Stronger
Improving Security, Efficiency, and Primitives for MPC

Nikolas Melissaris

PhD Dissertation

Department of Computer Science
Aarhus University

Denmark

Better, Faster, Stronger
Improving Security, Efficiency, and Primitives for MPC

A Dissertation
Presented to the Faculty of Natural Sciences

of Aarhus University
in Partial Fulfillment of the Requirements

for the PhD Degree

by
Nikolas Melissaris
November 24, 2024

Abstract

Multiparty computation (MPC) enables parties to collaboratively compute functions on
their inputs while preserving privacy. Evaluation of MPC protocols typically revolves
around: security guarantees (is the output delivered to everyone, always?), communication
complexity (how much information needs to be sent between the parties in order to carry
out the desired computation?), and computational assumptions (how simple and/or well
studied are the ones used?). This thesis advances MPC by developing tools that improve
MPC protocols across multiple axes.

First, we study identifiable abort. In a protocol with dishonest majority we can’t have
strong guarantees like guaranteed output delivery. Identifiable abort ensures that if an
adversary disrupts the computation, honest parties can identify at least one cheater and
exclude them from future runs, something that can work as a deterrent to malicious
behavior. We propose a new compiler that circumvents the limitations of previous
approaches, offering identifiable abort without the need for adaptive security. Our
approach leverages lightweight cryptographic tools to achieve an efficient preprocessing
phase while maintaining a fast online phase.

Next, we investigate the novel Friends and Foes (FaF) security model, which extends
traditional malicious adversary models. FaF security fixes a modeling problem security
definitions: not imposing any limitations on what the honest parties might learn during
the protocol. It accomplishes that by safeguarding private inputs from subsets of semi-
honest parties in addition to the malicious parties. We present constructions achieving
optimal round complexity and corruption thresholds, bridging gaps in prior work.

Pseudorandom Correlation Generators (PCGs) enable low-communication preprocess-
ing by shrinking the correlated randomness needed by a protocol. Towards improving
efficiency, we introduce PCGs for pseudorandom permutations. Our PCG construction for
pseudorandom permutations is the first that outputs non-additive correlations without
relying on heavy cryptographic primitives like indistinguishability obfuscation. Further-
more, it has practical applications in anonymous communication and distributed leader
elections.

Lastly, we propose structured-seed local pseudorandom generators (SSLPRGs), a weaker
(in terms of complexity of assumptions) notion of pseudorandom generators. We use
our construction of SSLPRGs in indistinguishability obfuscation (iO), constant-overhead
secure computation, sublinear communication protocols, and hardness-of-learning results,
pushing the boundaries of what weaker cryptographic assumptions can achieve.

Through these contributions, this thesis lays the groundwork for more secure, efficient,
and versatile MPC protocols.

i

Resumé

Flerpartsberegning (MPC) muliggør, at flere parter kan samarbejde om at beregne
funktioner på deres input, samtidig med at deres privatliv bevares. Vurdering af MPC-
protokoller fokuserer typisk på: sikkerhedsgarantier (bliver output altid leveret til alle?),
kommunikationskompleksitet (hvor meget information skal der udveksles mellem parterne
for at gennemføre beregningen?), og beregningsmæssige antagelser (hvor simple og/eller
velundersøgte er de antagelser, der anvendes?). Denne afhandling fremmer MPC ved at
udvikle værktøjer, der forbedrer protokoller på flere måder.

Først undersøger vi identificerbar afbrydelse. I en protokol med et uærligt flertal kan vi
ikke garantere, at alle ærlige parter modtager et output. Identificerbar afbrydelse sikrer, at
hvis en angriber forstyrrer beregningen, kan de ærlige parter identificere mindst én snyder
og udelukke denne fra fremtidige eksekveringer, hvilket kan virke som en afskrækkelse mod
ondsindet adfærd. Vi foreslår en ny protokol, der overvinder begrænsningerne i tidligere
tilgange ved at tilbyde identificerbar afbrydelse uden behov for adaptiv sikkerhed. Vores
metode udnytter lette kryptografiske værktøjer for at opnå en effektiv præbehandlingsfase
og samtidig bevare en hurtig onlinefase.

Dernæst undersøger vi den nye Friends and Foes (FaF) sikkerhedsmodel, som udvider
traditionelle modeller for ondsindede modstandere. FaF-sikkerhed løser et modellerings-
problem i de eksisterende sikkerhedsdefinitioner, som ikke pålægger nogen begrænsninger
på, hvad ærlige parter kan lære under protokollen. Modellen sikrer private input mod både
delmængder af semi-ærlige parter og de ondsindede parter. Vi præsenterer konstruktioner,
der opnår optimal runde-kompleksitet og korruptionsgrænser og udfylder huller i tidligere
forskning.

Pseudorandom Correlation Generators (PCGs) muliggør lavkommunikations/præbe-
handling ved at reducere den mængde af korreleret tilfældighed, der er nødvendig i
en protokol. For at forbedre effektiviteten introducerer vi PCGs for pseudo-tilfældige
permutationer. Vores PCG-konstruktion for pseudo-tilfældige permutationer er den første,
der genererer ikke-additive korrelationer uden at være afhængig af tunge kryptografiske
primitive som uadskilleligheds-obfuskering (iO). Vores konstruktion har desuden praktiske
anvendelser inden for anonym kommunikation og distribueret ledervalg.

Endelig foreslår vi structured-seed local pseudorandom generators (SSLPRGs), en
svagere version af pseudo-tilfældige generatorer (PRG), med hensyn til antagelsernes
kompleksitet. Vores konstruktion af SSLPRGs finder anvendelse i iO, sikker beregning
med konstant overhead, sublineære kommunikationsprotokoller og hårdhedsresultater for
læring, hvilket skubber grænserne for, hvad svagere kryptografiske antagelser kan opnå.

Med disse bidrag skaber denne afhandling grundlaget for mere sikre, effektive og
alsidige MPC-protokoller.

iii

Acknowledgments

As I sit here, writing this section, the rest of my thesis safely tucked away in its technical
armor, I find myself mere hours from submission. The protocols have been explained,
the proofs are proven, and the LaTeX is... well, as good as it’s going to get. Now, finally,
I can put aside the formality. This is the part where I can be myself; a little sentimental,
a little silly, and very grateful. It’s strange, isn’t it? I realize that writing a PhD thesis
feels a lot like climbing a mountain, except the mountain keeps changing its shape, the
summit is perpetually shrouded in fog, and halfway up, someone casually hands you a
stack of research papers you’re magically expected to read. But if there’s one thing I’ve
learned during this climb, it’s that no one reaches the peak alone. This thesis is as much
a testament to the incredible people who walked beside me, pushed me onward, or caught
me when I stumbled, as it is to the work itself. Oh my God, what a strange trip this has
been.

First, to the Aarhus Crypto Group, a community so vibrant, it’s like stepping into an
intellectual greenhouse, where ideas flourish and ambitions grow. You welcomed me with
open arms and gave me the most stimulating environment I could have hoped for. Your
passion and camaraderie set the gold standard for research groups everywhere. Everyone
that visits wants to stay, and everyone that leaves comes back with a confession: “It’s
good, but it’s not Aarhus”.

To Claudio for willing to entertain an e-mail from an unknown student and then
entertain it again when the first time didn’t work out. Also, for making Kelsey feel like
home from the very beginning. To Ivan, equal parts myth and man. His calm, steady
demeanor across the hallway wasn’t just a presence; it was a lesson, a reminder that
being exceptional doesn’t mean towering over others-it means lifting them up. To Sophia
and Divya, for approaching me with a project when I was still clueless, fumbling through
the basics. They are the co-authors on my very first published paper. That is a milestone
that I’ll cherish more than they’ll ever know.

To Diego and Rahul: my co-conspirators in turning this PhD into a mix of intellectual
pursuit, sitcom-level absurdity, and occasionally, deep Sunday philosophy sessions. Diego,
you somehow manage to be the perfect mix of encyclopedic knowledge and unapologetic
goofiness. Whether you were flexing your random trivia, dissecting sci-fi plots, or dropping
some obscure theorem, you never failed to crack me up—or make me think, sometimes
both at once. And Rahul, my academic brother and king of the subtle (or not so subtle)
roast, you were always there with the perfect quip to keep me grounded (or to mercilessly
point out when I was missing something obvious). We’ve talked smack, solved problems,
and somehow stumbled into meaningful conversations about life that I never saw coming.
Together, you two made every day an adventure. We built this dynamic where every
moment was a mix of trash-talking, unfiltered laughter, and the kind of camaraderie

v

Acknowledgments

you just can’t fake. Honestly, the balance of chaos and support you both brought into
my life made this PhD feel more like an inside joke that only the three of us could ever
understand. I can’t imagine this journey without you, and I wouldn’t want to. Here’s to
all the memes, the debates, and those strangely profound moments I’ll hold onto forever.
You made these years much more fun than they had any right to be. Seriously, I owe
you both more laughs than I can count.

To Mahak, my ultimate officemate and co-captain of our little ship for three unfor-
gettable years. Sharing that office with you wasn’t just about sharing a workspace—it
was about creating a sanctuary where we could unload our insecurities, fears, hopes,
and dreams. That office wasn’t just where we worked; it was where we talked about
everything from life’s big mysteries to why is it so gray outside again. You made days
better, whether it was through a chat about what we ate, an inside joke, or just silently
agreeing that neither of us was in the mood to deal with anything. It wasn’t just an
office; it was our office—the one people stopped by because it felt a little lighter, a little
warmer, and a whole lot more fun.

To Lennart, the undisputed LATEX (see what I did there?) wizard whose magic saved
me from more disasters than I care to admit. If there were an Olympic event for patience
with someone else’s “Undefined control sequence” meltdowns, you’d not only win gold
but probably have a medal named after you. Truly, your ability to fix my chaos at 11
PM—sometimes with a sigh, most times with a smirk—has been nothing short of heroic.
I promise I’ll try to keep the late-night emergencies to a minimum. And now, we’re
heading to Paris together for our postdoc adventures. If these years were the warm-up,
I can’t wait for the days of genius and nights of baguettes and cheese. Here’s to new
beginnings, more laughs, and probably more “Lennart, can you fix this?” moments. Paris
doesn’t know what’s about to hit it.

To Damiano and Mark, partners in adventure, and infamous pesto-less dinner. To
Marius and Sebastian, who bravely joined me for their first surf lesson. And Sebastian,
thank you, not just for the waves but for sharing your fancy coffee. To Simon, my
Edinburgh pub buddy, whose commitment to one bar for a full week is the kind of loyalty
every beer deserves. To Jakob, a fantastic human being, always ready for coffee breaks, a
chat, a hike, or even festivals that he’ll eventually realized he didn’t like. To Hannah
and Wesley, for making board game nights the perfect mix of strategy and laughter. To
Katharina and her lattice course. To Mathias and his dancing through the hallways. To
Matteo, for finding each other again halfway across the world. Thank you for showing me
the best pizza place in Aarhus. To Lance, the oracle. The guy that will drive seasoned
researchers to madness with his ability to solve problems in the blink of an eye. To
Pierre and his vast knowledge of obscure facts. Here’s to our upcoming sushi marathon.
To Maciej, the mastermind of Friday bar mischief, for teaching me how great Bailey’s
with tea can be for the cold winter nights. A special shoutout to Nikolaj for making
my Danish abstract not only grammatically correct but even vaguely comprehensible.
Tak for alt! To Chris Schwiegelshohn and Christian Pedersen for being my PhD support
group. I’m very sorry for the all times I stood you up and had to reschedule.

To Malene, the glue that keeps the Aarhus Crypto Group running like a finely tuned
engine. You are the unsung hero who makes it all possible, and I’m endlessly grateful for

vi

everything you do.
Then, there’s Peter, my advisor and all-around academic compass. Peter, what can I

possibly write here that captures everything you’ve been to me these past years? Your
brilliance is undeniable, your patience superhuman, and your knack for answering even
my dumbest questions with a smile? Legendary. Those casual pop-ins with a cheerful
“How’s it going?”—just when I was deep in the weeds—were like lifebuoys keeping me
afloat. You didn’t just guide this thesis; you guided me. You taught me not just how to
do research but how to think, how to question, and, most importantly, how to believe in
myself when doubt was louder than reason. Your mentorship was a masterclass not just in
academic rigor but in humanity. You’ve shown me that being a great scientist and being
a genuinely good person aren’t mutually exclusive—they’re essential companions. Peter,
if one day I can make even one student feel the way you’ve made me feel—supported,
seen, and capable—I’ll consider my academic career a success. Oh, and if I ever knock
on a student’s door with a “How’s it going” I promise to say it with the same sincerity,
even if they’re halfway through reading sports news and pretending to work. Thank you,
Peter—for everything.

To Antigoni. You didn’t just help me find my footing when I was teetering on the
edge—you built me a whole staircase. You patiently introduced me to this field, in which
I wrote this thesis, breaking it down piece by piece. Despite your packed schedule, you
carved out time to start projects with me, giving me a lifeline when I had no idea what
to do next. Without you, I might never have made it to Aarhus, and for that, I owe
you more than words can express. But your kindness didn’t stop with me. You’ve been
just as invaluable friend to Kelsey, guiding her on her own academic path with the same
generosity and care. Antigoni, you’ve been a mentor, a lifeline, and a beacon of hope
wrapped up in one amazing person. Thank you for everything, from your intellectual
generosity to your unwavering support. I’ll forever be grateful for the light you’ve brought
to my life.

To Daniel, your dedication during my internship that summer went above and beyond
anything I could have expected. You spent so much time guiding me and ensuring that
every step of the process was a success. It wasn’t just the technical skills I gained—it
was the sense of having someone in my corner, rooting for me and making sure I didn’t
falter. In those weeks, I didn’t just gain a mentor; I gained a friend. Thank you for being
the kind of person who invests so much into others—it made all the difference for me.

To my co-authors, this thesis exists literally thanks to your brilliance and collaboration.
Alex, Carsten, Divya, Dung, Geoffroy, Peter, Rahul, Sacha, Sophia thank you for your
insights, your rigor, and for not muting me during my caffeine-fueled tangents.

A nod of gratitude to the committee who agreed to review my thesis. I promise I owe
you all a coffee.

To Geoffroy, thank you for being both a guide and a friend during my time in Paris.
You made sure I had meaningful projects to work on and generously made time in your
busy schedule to support me. On top of that, you ensured I wasn’t alone in the city,
a gesture of kindness I’ll never forget. Now, I’m super excited as I look forward to my
postdoc years with you. Here’s to the papers we’ll write, the ideas we’ll explore, and, of
course, the quest for the best croissant in the land. Merci pour tout.

vii

Acknowledgments

To Stathis Zachos. You’ve supported me through every jump, every blunder, and every
wild hop I’ve taken in my career.

To my friends back home. There’s something extraordinary about our friendship.
One that has weathered, oh my God, so many years. We’ve gone from playgrounds
and classrooms, to scattered lives across the globe, yet no matter where we are, you’ve
remained my constant. In a world that changes so fast, you’re the steady ground I can
always lean on when life feels weird. Even as we’ve taken our own paths and built new
lives, that connection we forged so long ago hasn’t just survived—it’s grown stronger.
You’re the ones who remind me who I am when things get overwhelming, the ones who
bring me back to myself when I lose my footing. Whether it’s through a message, a
memory, or just the knowledge that you’re out there, you’ve been my quiet strength.
Thank you for being the people I can count on, no matter how far apart we are.

To my in-laws. Linda and Steve, you welcomed me into your home and into your
hearts, providing warmth and support through all the ups and downs of this journey.
Linda thank you for your kindness. Steve, if this work had a dedication page for culinary
excellence, your grill would be front and center. Rick and Cheryl, thank you for your
advice, humor, and support. You’ve all been there in your own ways, rooting for me,
lifting me up, and reminding me that family doesn’t just support—it nourishes. Thank
you for being my cheerleaders. I couldn’t have asked for a better extended family to lean
on.

To my parents, everything I am, and everything I hope to become, starts with you.
Mom, your caring for people is so extraordinary that it is sometimes baffling to me.
Your unending energy and determination could power a small city. Dad, your boundless
patience and quiet kindness taught me that strength doesn’t need to shout—it listens, it
endures, and it always knows how to fix things around the house. Whether it was cheering
at my basketball games, organizing chaos into something resembling order, or somehow
finding the time to be everywhere I needed you, you’ve always been a force of nature.
From the countless hours you spent driving me to practice as a kid, to that bittersweet
drive to the airport when I set off to build a life abroad, you’ve been with me every step
of the way—often literally, with snacks packed for the journey. And through it all, no
matter how far I’ve gone, you’ve never made me feel like I was too far from home. You’ve
shaped me not just with your love but with the example you set every single day. I can
only hope to pass on a fraction of your humor, generosity, and stubborn determination
to the world. Thank you for being my foundation, my fans, and occasionally, my reality
checks. I owe you everything.

To my brothers, you’ve been my greatest teachers, life coaches, and sometimes unwitting
stand-up comedians. Through your wisdom—or whatever it is you call it—you’ve shown
me how to navigate life with resilience, humor, and the occasional well-timed eye-roll.
You’ve taught me lessons I couldn’t have learned anywhere else: how to stand my ground,
how to laugh at life’s chaos, and most importantly, how to survive a sibling wrestling
match. You’ve been there for every stumble and every triumph, offering advice that
ranged from “You’ve got this” to “That’s what you get”. You’ve been my reality slap
when I was too serious, my hype squad when I doubted myself, and my lifelong allies in
turning even the most mundane moments into hilarious memories. Whether it was shared

viii

jokes that only we’d understand, or simply knowing you’ve got my back, you’ve shaped
me in ways I’m endlessly grateful for. Thank you for keeping me grounded, making me
laugh, and reminding me that no matter where life takes us, there’s no bond quite like
the one forged by growing up together. You’ll always be my favorite teachers—just don’t
let it go to your heads.

Finally, to Kelsey, my anchor, my adventurer, and my greatest love. We’ve crisscrossed
continents and crammed our lives into boxes more times than I can count, yet wherever
we’ve landed, you’ve made it feel like home. Through all the chaos of moving, adapting,
and figuring out life, you’ve been my constant—the person who insists I eat something
other than cereal for dinner, who gently reminds me to sleep when I’m deep into a
late-night spiral, and who knows exactly when to pull me out of my own head. You’ve
stood beside me through every high and low, with a strength and grace that humbles
me daily. And when I stare blankly out the window, you have this uncanny way of
pulling me back, making me talk about the hard things, the real things—the things I’d
otherwise try to ignore. But it’s not just the serious moments that have defined us—it’s
everything in between that makes us, us. It’s the quiet joy of Sunday mornings when the
world feels still, when you bring pizza or a Kanelsnegle for breakfast or when you make
coffee and the whole house smells like hazelnut. It’s how you’ve turned even the messiest
days into memories I’ll treasure forever. When everything felt overwhelming, you were
the calm at the center of the storm, reminding me with your steady presence that we’d
figure it out—together. You’ve turned the chaos of this journey into something beautiful.
You’ve been my greatest companion, my brightest light, and the person who makes every
challenge feel surmountable simply because you’re by my side. This PhD, every (not so)
late-night struggle, every fleeting moment of doubt, carries your fingerprints as much as
mine. You didn’t just support me through this; you carried me when I couldn’t carry
myself. I owe you more than words can ever express, and I will spend my life trying to
show you how much you mean to me.

This PhD, every page of it, carries your invisible signature. For every reassuring
word when I doubted myself, and for every time you reminded me that we were in this
together—I can never thank you enough. I’m proud of this thesis, but I’m prouder still
to call you my wife. You never once doubted me even when I doubted myself. Your
sacrifices, your strength, and your humor have been my compass through every storm.
Thank you for being my biggest fan, my grounding force, and for keeping me sane when I
was ready to throw my laptop out the window. This PhD is as much yours as it is mine.

To everyone mentioned here and to those I might have inadvertently missed, you have
my endless gratitude. This thesis is dedicated to you all—my village, my team, my
people.

Nikolas Melissaris,
Aarhus, November 24, 2024

ix

Contents

Abstract i

Resumé iii

Acknowledgments v

Contents xi

I. Overview 1

1. Introduction 3
1.1. Multiparty Computation (MPC) . 3
1.2. Making MPC more robust - What is this thesis about? 8

2. Better MPC - Security 11
2.1. MPC with Identifiable Abort . 11

2.1.1. The Notion of Identifiable Abort 11
2.1.2. Our Contributions . 13
2.1.3. Some Preliminaries . 14
2.1.4. Informal Technical Overview . 15
2.1.5. Efficiency Analysis . 17

2.2. MPC with Friends and Foes . 18
2.2.1. Our Contributions . 20
2.2.2. Informal Technical Overview . 22

3. Faster MPC - Efficiency 25
3.1. PCGs, PCFs, and the Preprocessing Paradigm 25
3.2. Our Contributions . 26
3.3. Informal Technical Overview . 26

4. Stronger MPC - Weaker Primitives 31
4.1. Pseudorandom Generators (PRGs) . 31
4.2. Our Contributions . 32
4.3. Structured-Seed Local PRGs . 32
4.4. Applications . 35

4.4.1. Indistinguishability obfuscation . 36
4.4.2. Constant-overhead secure computation 37

xi

Contents

4.4.3. Sublinear Secure Computation and Compact HSS 38
4.4.4. Hardness of Learning . 39

5. This Thesis 43
5.1. Papers and Contributions . 43

II. Better Security Guarantees for MPC 45

6. MPC with Identifiable Abort 47
6.1. Introduction . 47

6.1.1. Our Contribution . 49
6.1.2. Technical Overview . 49
6.1.3. Related work . 54

6.2. Preliminaries and Notation . 55
6.2.1. Modeling Security . 56
6.2.2. VOLE and Information-Theoretic MACs 56
6.2.3. Signatures . 58
6.2.4. Basic Functionalities . 59

6.3. Online-Extractable Protocols . 60
6.4. Homomorphic Commitments Based on VOLE 66

6.4.1. Protocol with Abort . 69
6.4.2. Online Extractibility of ΠHCom . 73

6.5. Compiling to Identifiable Abort . 74
6.5.1. The Compiler . 75
6.5.2. Identifiable Cheating . 81

6.6. Preprocessing . 85

7. MPC with Friends and Foes 93
7.1. Introduction . 93

7.1.1. Prior Work . 94
7.1.2. Related Work . 94
7.1.3. Our Contributions . 95
7.1.4. Organization . 96
7.1.5. Notation . 97

7.2. Definitions . 97
7.2.1. FaF Security. 98

7.3. Relation of FaF to Other Notions . 100
7.4. Building Block: Decentralized Threshold FHE 103
7.5. Three-Round MPC with Weak FaF and Guaranteed Output Delivery . . . 106
7.6. Optimal-Threshold MPC with Strong FaF and Guaranteed Output Delivery110

7.6.1. Adaptive BGW Against Mixed (Fail-Stop / Passive) Adversaries . 111
7.6.2. Adaptive BGW Against Mixed (Active / Passive) Adversaries . . . 113

xii

Contents

III. Improving Efficiency for MPC 115

8. Compressing Pseudorandom Permutation Correlations 117
8.1. Introduction . 117
8.2. Technical Overview . 119

8.2.1. Background . 119
8.2.2. Main ideas and approach . 119
8.2.3. Overview of our PCG construction 122
8.2.4. Overview of our PCF construction 123

8.3. Preliminaries . 123
8.3.1. Homomorphic Secret Sharing . 123
8.3.2. Programmable Function Secret Sharing and Distributed Point

Functions . 126
8.3.3. Pseudorandom Correlation Generators 128
8.3.4. Pseudorandom Correlation Functions 129

8.4. Constructions . 131
8.4.1. Doubly-Programmable PCGs . 131
8.4.2. Permutation PCG From PCG for Biased Bits 132
8.4.3. Programmable PCG for (1/6)-Biased Bits from Quasi-Abelian

Syndrome Decoding . 133
8.4.4. Unbiased PCF for Permutations Constructions 138

8.5. Applications . 140
8.5.1. Anonymous broadcast via DC-nets 142
8.5.2. Single Secret Leader Election . 144

8.6. Optimizations and Evaluation . 145
8.6.1. Optimizing Programmable PCGs for Biased Bits 145
8.6.2. Implementation and parameters 148
8.6.3. Benchmarks . 149

IV. Weaker Primitives for MPC 151

9. Structured-Seed Local Pseudorandom Generators and their Applications 153
9.1. Introduction . 153

9.1.1. Our contribution . 153
9.1.2. Concurrent work . 154

9.2. Preliminaries . 155
9.2.1. LPN Assumptions . 156
9.2.2. Useful Lemmas . 157

9.3. Defining Structured-Seed Local PRGs . 157
9.3.1. Noisy local circuits . 157
9.3.2. Noisy local PRGs . 158
9.3.3. Structured-seed local PRGs . 159
9.3.4. From weak to strong local PRGs 160

xiii

Contents

9.4. The Sparse-LPN Assumption . 160
9.4.1. The sparse-LPN assumption . 160
9.4.2. Security against linear tests . 161
9.4.3. The dual distance of random sparse matrices 163
9.4.4. A parametrized version of the sparse-LPN assumption 165
9.4.5. Amplifying advantage . 166
9.4.6. Variants: changing the noise or matrix distribution 168
9.4.7. Predicate-conditioned sparse-LPN 168

9.5. A Structured-Seed Local PRG from Sparse LPN 169
9.5.1. Compressing unit vectors . 170
9.5.2. Warm-up: a structured-seed local PRG from regular sparse LPN . 170
9.5.3. Removing regularity using 2-choice hashing 171
9.5.4. Sampling the seed . 173
9.5.5. Expanding the seed . 174
9.5.6. Testing the hash functions . 175
9.5.7. Sampling the hash functions . 176
9.5.8. Properties of Test . 176
9.5.9. Efficiency and Security . 178
9.5.10. Structured-seed local PRGs beyond quadratic stretch 179
9.5.11. Structured-seed local PRGs beyond quadratic stretch 181

9.6. A Structured-Seed Local PRG from Expand-Accumulate Codes 183
9.7. Applications . 184

9.7.1. Indistinguishability obfuscation . 184
9.7.2. Constant-overhead secure computation 186
9.7.3. Sublinear secure computation and compact HSS 187
9.7.4. Hardness of learning . 189

Bibliography 193

xiv

Part I.

Overview

1

1. Introduction

1.1. Multiparty Computation (MPC)
A Toy Example Imagine a group of friends. Let’s assign them totally random names:
Alice, Bob, and Carol. They will be recurring characters all throughout this thesis. This
group of friends, for their own reasons, are in desperate need of computing the average
of their salaries. Additionally, for reasons unlear to the outside observer, they are very
reluctant to share their individual salary with each other. This might seem like an
impossible task at first but if you think a little bit, a very simple idea arises. Alice, who
makes a (in some currency) can pick a random number, say r and add it to her salary.
Now she can pass this number r+ a to Bob who will add his salary b to the sum and pass
it to Carol. Carol will add her own salary c and give the final sum r + a+ b+ c to Alice.
Now Alice can subtract r and retrieve the sum of all salaries, divide by 3, and announce
the average to the group. You can notice that during this process, no information about
the private inputs was leaked. When Bob receives r + a he has no way of knowing a
unless he correctly guesses r. Same goes for Carol. The value she sees is masked by a
random value and thus seems random.

Why MPC Matters The motivation for multiparty computation (MPC) lies in its
ability to achieve this seemingly difficult task of collaboration with privacy. In real-world
applications, privacy concerns often prevent entities from pooling their data for mutual
benefit. For example, hospitals may want to analyze shared medical data to detect trends
in therapies and potential cures, but strict privacy regulations make direct data sharing
impossible. Similarly, financial institutions may want to collaborate on fraud detection
without exposing sensitive customer data. MPC provides a solution to these challenges
by allowing such computation without requiring any party to reveal their private data.

MPC extends the basic idea which we talked about in the toy example above, to
much more complex computations, from statistical analyses and machine learning, to
the canonical example of a real world MPC application: the sugar beet auction by the
Danish farmers [Bog+08]. All that while maintaining rigorous privacy guarantees. For
computer scientists MPC represents an exciting intersection of algorithms, distributed
computing, and cryptography. It opens the door to collaborative computations that were
previously impossible due to privacy concerns and/or regulations, facilitating applications
in finance, healthcare, and beyond.

Lastly, the MPC paradigm offers a way to think about secure computation in distributed
systems. Understanding the underpinnings of MPC not only enhances a computer
scientist’s toolkit but also provides insights into how to design systems that respect both
functionality and privacy.

3

1. Introduction

In short, multiparty computation (MPC) enables a group of parties to jointly compute
a function over their inputs while keeping those inputs private. To ease into formalism,
let P1, P2, . . . , Pn denote n participants, each holding a private input xi (for i = 1, . . . , n).
The goal is for the parties to jointly compute a function f(x1, x2, . . . , xn) such that the
result is output, and no additional information about each party’s input is revealed.
The protocol should ensure that no group of parties can learn anything more than
f(x1, x2, . . . , xn).

Security Models

In the MPC setting, security is defined with respect to some adversary A who controls
some of the participating parties.

Semi-Honest v. Malicious Adversary Depending on how A behaves during the
execution of a protocol we get the following two categories:

1. Semi-Honest Adversary: Parties follow the protocol honestly but may attempt to
learn additional information from any intermediate values they observe.

2. Malicious Adversary: Parties can deviate arbitrarily from the protocol.

Security in these models can be formalized via simulation-based definitions. Let Π be
an MPC protocol for computing f in the presence of adversaries. Security states that
for any adversary corrupting a subset C ⊂ {P1, . . . , Pn}, there exists a simulator S such
that the view of the adversary in the real execution of Π is indistinguishable from its
view in an idealized execution where a trusted third party computes f and sends results
to participants. This can be expressed as:

Viewreal
A (x1, . . . , xn) ≈ Viewideal

A (f(x1, . . . , xn)).

Static v. Adaptive Adversary Depending on when A chooses to corrupt parties we get
the following two categories:

1. Static Adversary. A static adversary selects the set of corrupted players at the very
beginning, before the protocol starts, and cannot change this set afterward.

2. Adaptive Adversaries. An adaptive adversary dynamically selects which participants
to corrupt during the execution of the protocol.

Security Guarantees

In order to define security in MPC we imagine an “ideal-world” in which our protocol
behaves exactly how we want it. It’s a secure “box” (which we call an ideal functionality)
that receives inputs from the parties and gives the correct output to each party and nothing
more. The way we define security is by assuring the parties that their interaction real-
world protocol is pretty much the same as if they had interacted with an ideal functionality.

4

1.1. Multiparty Computation (MPC)

However, depending on adversarial power, the notion of an ideal functionality revealing
nothing more than the output can be satisfied with any of the following guarantees:

1. Guaranteed Output Delivery. It ensures that, regardless of how the adversary
deviates from the protocol, all honest parties are guaranteed to receive the output.
This is the best guarantee that a protocol can offer.

2. Fairness. Fairness ensures that if the adversary can compute the output, then all of
the honest parties will also receive it. In simpler terms, fairness means that either
everyone gets the outputs or no one does.

3. Security with abort. The adversary has the ability to halt the protocol at any stage,
including before or during the output phase. This allows the adversary to obtain
the output and force the honest parties to abort without a result.

Each of these guarantees provides a different tradeoff between practicality and resilience
against adversarial behavior.

Corruption Threshold

In multiparty computation (MPC), feasibility results vary significantly depending on the
fraction of parties that can be controlled by the adversary A. In protocols with an honest
majority, security guarantees can be achieved with information-theoretic techniques. For
example, in the semi-honest model a protocol can securely compute any function as
long as fewer than half of the participants are corrupted (t < n/2 , where n is the total
number of parties). The same result in the malicious model, requires that fewer than
one-third of the participants are corrupted (t < n/3). Under these thresholds, MPC
protocols can achieve unconditional security, meaning that security does not rely on any
computational assumptions.

With a dishonest majority (t ≥ n/2), MPC protocols rely on computational assumptions
to achieve security. Dishonest majority protocols often assume the existence of a public-
key infrastructure (PKI) and a broadcast channel in order for the protocol to succeed.
Protocols designed for a dishonest majority tend to have higher computational and
communication complexity due to the need for “heavier” cryptography, such as zero-
knowledge proofs, which can help to ensure that exchanges during the protocol execution
happen in the way they are supposed to. The computational security that MPC protocols
provide in this case relies on the hardness of certain problems, such as the discrete
logarithm or factoring problems.

Key Techniques in MPC

We will now mention some of the building blocks of MPC protocols. Although it’s
impossible to make an exhaustive list of all of them, we will mention some of the very
widely used ones and some specialized ones that appear in this thesis. Some others that
are more complex and appear only in specific upcoming chapters will be introduced at

5

1. Introduction

the appropriate section to avoid clutter and to improve readability in those particular
sections.

Secret Sharing One of the foundational techniques in MPC is secret sharing and most
well-known secret sharing schemes are Shamir’s secret sharing and additive secret sharing.
A secret s ∈ Fq is divided into n shares s1, s2, . . . , sn such that any t-subset of shares can
reconstruct s, but any subset of fewer than t shares reveals no information about s.

In additive secret sharing, a secret s is split into n random shares s1, s2, . . . , sn such
that:

s = s1 + s2 + · · ·+ sn (mod p),

where p is a large prime number. Each party receives one share, and any subset of n− 1
or fewer participants learns nothing about s. To reconstruct s, all n shares are summed
together.

Shamir’s scheme is based on polynomial interpolation. This is done by choosing a
random polynomial p(x) of degree t − 1 such that p(0) = s and setting si = p(i) for
i = 1, . . . , n. The sharing algorithm can be formalized as:

si = p(i) = s+ a1i+ a2i
2 + · · ·+ at−1i

t−1,

where a1, . . . , at−1 are randomly chosen from Fq.

Homomorphic Encryption A technique frequently employed in MPC is homomorphic
encryption. A homomorphic encryption scheme allows computation on ciphertexts such
that the decrypted result is equivalent to the computation on the plaintexts. For example,
given an encryption function E and messages m1,m2, additively homomorphic encryption
ensures that:

E(m1) · E(m2) = E(m1 +m2).

Such schemes are particularly useful for MPC as they allow parties to perform operations
on encrypted data without revealing the underlying values.

Oblivious Transfer Oblivious transfer (OT) is another essential primitive in MPC. It is
a very powerful tool and it is sufficient to realize any secure computation functionality
[Kil88; IPS08]. In a 1-out-of-2 OT protocol, a sender has two messages, m0 and m1,
and a receiver has a choice bit b ∈ {0, 1}. The protocol allows the receiver to obtain mb

without learning m1−b, and the sender learns nothing about b. Take, for example, the
famous GMW protocol for boolean circuits [GMW87a]. We’ll talk about the two party
case for simplicity. Two parties P1 and P2 have inputs x and y. They secret share said
inputs so that x = x1 ⊕ x2 and y = y1 ⊕ y2, where xi and yi are the shares of Pi. Now
the parties proceed to evaluate the circuit gate by gate. XOR gates are computed locally:
if z = x⊕ y parties can compute shares of z by having every party set zi := xi ⊕ yi. For
AND gates, things are not as easy unfortunately. We have z = x ∧ y and now the parties
cannot compute shares of z with local computation alone. Instead, they have to interact.

6

1.1. Multiparty Computation (MPC)

In order to do this securely they will use a 1-out-of-4 oblivious transfer scheme. P1 will
pick a uniformly random bit z1 to be its share of z and now needs to determine P2’s
share. Since z2 = z ⊕ z1 then we have z2 = (x ∧ y) ⊕ z1 = ((x1 ⊕ x2) ∧ (y1 ⊕ y2)) ⊕ z1
and for all possible values of x2y2 P1 can compute zx2y2

2 = ((x1 ⊕ x2) ∧ (y1 ⊕ y2))⊕ z1.
P1 will play the role of the sender with input z01

2 , z01
2 , z10, z11 and P2 will be the receiver

with inputs x2y2. The OT will give the correct zx2y2
2 to P2 and now both parties are

holding correct shares.
It is important to note that we can build passively secure OT given any public key

encryption scheme. But can we do better? Enter OT extension. OT extension allows
parties to use a small number of base OTs to get a larger number of OTs from more
efficient primitives. While the first construction in [Bea96] was inefficient, [IKNP03]
presented a very efficient extension with small overhead. Recently, with a technical
innovation called a pseudorandom correlation generator (PCG) (which we define in a
little bit) Boyle et al. [BCGIKS19] present the first concretely efficient construction for
extending OTs.

Pseudorandom Correlation Generators Recent developments in MPC have focused on
reducing the communication complexity of protocols. One approach involves using pseu-
dorandom correlation generators (PCGs) [BCGI18; BCGIKS19], which enable parties to
pre-generate correlated randomness that can be used to mask intermediate computations.
Given a correlated seed σ, each party can locally expand this seed to get l correlated
values (r1, r2, . . . , rn), reducing the need for extensive interaction during the protocol
execution. Formally, let G be a pseudorandom generator that expands σ such that:

(r1, r2, . . . , rl) = G(σ),

where the ri satisfy a specific correlation required by the MPC protocol (e.g., additive
shares summing to zero).

The preprocessing paradigm A lot of MPC protocols rely on correlated randomness.
But correlated randomness doesn’t rely on the private inputs of the parties so what we can
do is split the protocol in two phases: A preprocessing (or offline) phase is used to generate
the necessary correlated randomness and the online phase which is when the output is
computed. Typically, the processes run in preprocessing are computationally expensive
but the benefit is that then we can have a very efficient online phase. Furthermore, PCGs
can compress the preprocessing phase even futher by allowing two parties to take short,
correlated seeds, and expand them to a large amout of correlated randomness. Using
PCGs we can achieve sublinear communication complexity but also get better space
efficiency since we only need to store the initial short seed.

Advances in MPC have made significant strides in improving both efficiency and
scalability, transforming MPC from a theoretical construct to a practical solution for secure
collaborative computation. Innovations such as PCGs and low-communication secret-
sharing schemes have reduced the communication complexity of traditional MPC protocols,
addressing bandwidth limitations that have hindered large-scale deployments. Combining

7

1. Introduction

MPC with techniques like homomorphic encryption and zero-knowledge proofs further
enhances performance, particularly for computationally intensive applications. In terms
of applications, MPC is now successfully implemented in fields like privacy-preserving
machine learning and secure data analytics, enabling collaborative computations on
sensitive data without sacrificing privacy.

1.2. Making MPC more robust - What is this thesis about?

In this thesis we set out to make more robust MPC. But we haven’t defined what this
means. An MPC protocol can be evaluated across multiple axes: What is its round
complexity? What are the security guarantees that it offers? What corruption threshold
does it support? In addition we care about what assumptions are being used or how
much computation is needed. In the preprocessing paradigm we care about how much
computation was pushed into the offline phase for an efficient online phase. There are
more parameters that we study in order to talk about the efficiency of a protocol but
these are the most common ones.

So what do we mean when we talk about making MPC more robust? In the bibliography
we can find the term robust to mean guaranteed output delivery [PR19], providing security
against t malicious adversaries (t-robustness) [HN06], or producing a correct output in
a constant number of rounds [UR24]. There seems to be no consensus. Because robust
seems a bit overloaded we’ll avoid specifying it precisely. In this thesis we use the term
more freely, as a colloquiallism rather than a formal term. By making MPC more robust
we mean to improve protocols in any of the aforementioned axis:

1. In terms of security guarantees, we know from results due to Cleve [Cle86] that
with a dishonest majority a protocol can’t achieve guaranteed output delivery (or
even fairness). In our paper [BMRS24] we build on a line of work that asks “What
can we do better in the presence of a dishonest majority?”. A satisfactory solution
comes from identifiable abort. At the end of a protocol that the adversary has
aborted, the honest parties will either learn the output, or learn the identity of one
or more cheaters. The honest parties can then use this information to re-run the
protocol excluding corrupt parties. For an overview see Section 2.1 and for the full
paper see Chapter 6.

2. In terms of security modeling we continue a line of work around a new security
model “Security with Friends and Foes” [AOP20]. The authors ask “Can we extend
the standard notion of security against malicious adversaries to prevent leakage of
private information to (possibly colluding) subsets of (semi)-honest parties?”. In
other words (making obvious what gave rise to the name), can we protect our input
from our foes but also from our friends? In our work [MRY23] we study this new
notion and provide protocols that match the optimal parameters (round complexity
and corruption threshold) that were introduced in [AOP20]. For an overview see
Section 2.2 and for the full paper see Chapter 7.

8

1.2. Making MPC more robust - What is this thesis about?

3. In terms of efficient communication, in our work [CKMSS24] we introduce a PCG
for pseudorandom permutations. This means that the expansion of a short seed
will give each party a distinct random position in a permutation. Though limited
to the three party setting, ours is the first PCG for non-additive correlations
(meaning that the parties obtain something other than an additive share of the
target correlation) which doesn’t assume indistinguishability obfuscation. For an
overview see Chapter 3 and for the full paper see Chapter 8.

4. In terms of using weaker primitives in MPC protocols, in our work [BCM24] we
introduce and construct structured-seed local PRGs (SSLPRGs). Pseudorandom
generators (PRGs) are functions whose output can’t be distinguished from a random
string by a polynomial-time algorithm. Local PRGs have each output bit depend
only on a constant number of input bits. Finally, structured-seed means that in
contrast to regular PRGs where the seed is sampled uniformly at random, the seed
is sampled from a different distribution. Sampling from the uniform distribution
is expensive so removing this necessity makes our object simpler. We show how
our SSLPRG can be used to prove results in a variety of areas including constant
overhead secure computation [IKOS08] and sublinear communication [BCM23]. For
an overview see Chapter 4 and for the full paper see Chapter 9.

9

2. Better MPC - Security

We already talked about the different ways the adversary can behave in an MPC protocol.
The dishonest majority setting is a challenging one for MPC as the strong guarantees of
guaranteed output delivery and fairness cannot be achieved. To this end, in the following
sections we talk about two notions that will help us towards our goal of making MPC
more robust. In Section 2.1 we talk about identifiable abort and how it strengthens
security-with-abort protocols. In Section 2.2 we talk about security with friends and foes
and how it strengthens regular malicious security.

2.1. MPC with Identifiable Abort
One of the major parameters that we want to study in an MPC protocol is the corruption
threshold, meaning the maximum number of parties that can act maliciously or share
information without compromising the protocol’s guarantees. Ideally we would like to
preserve said guarantees even when all but one party in the protocol are corrupt.

We have seen the notion of fairness and how it ensures that if any dishonest participants
see the output, so do the honest ones. It’s known however, that when we are in the
dishonest majority setting, fairness and the even stronger guarantee of guaranteed output
delivery are impossible [Cle86]. Consequently, protocols instead aim for a weaker standard
which is security with abort. This means that a corrupt participant can force the protocol
to terminate prematurely, preventing some or all honest participants from obtaining the
correct result. We can see how this can be a trivial form of denial of service where the
adversary can abort over and over again, not allowing the honest parties to get anything
meaningful from the protocol.

2.1.1. The Notion of Identifiable Abort

In dishonest-majority scenarios where fairness is impossible we would like to at least
be able to allow honest parties to agree on the protocol’s termination and, even better,
to identify at least one of the cheating parties if an abort occurs. This property, called
identifiable abort, can discourage malicious behavior since any cheater exposed can be
excluded from further rounds of computation. Identifiable abort and unanimous abort
were first established as achievable by Goldreich, Micali, and Wigderson [GMW87a].
Their well-known GMW compiler provides a method to convert any protocol secure
against semi-honest adversaries into one that achieves identifiable abort security against
malicious adversaries. The core idea of the GMW approach is straightforward: parties
begin by committing to their inputs and then collaboratively execute an augmented coin-
tossing protocol to generate a committed random tape for each participant. Following

11

2. Better MPC - Security

this setup, the original protocol is executed over a broadcast channel, with an additional
requirement—each message is accompanied by a zero-knowledge proof to demonstrate
that it was computed correctly.

While conceptually elegant, this method has significant efficiency drawbacks. Its
reliance on cryptographic primitives in a non-black-box manner introduces substantial
computational overhead, making it impractical for many real-world applications.

Identifiable abort in dishonest-majority MPC was first systematically explored by Ishai,
Ostrovsky, and Seyalioglu [IOS12]. They found that it’s impossible to construct uncondi-
tionally secure ID-MPC using only broadcast channels and pairwise ideal functionalities
(such as oblivious transfer (OT)), which contrasts the secure-with-abort model, where
pairwise OT alone is sufficient. Later, Ishai, Ostrovsky, and Zikas [IOZ14] introduced a
compiler that converts any semi-honest protocol using correlated randomness into one
that can withstand malicious behavior and provides identifiable abort in the correlated
randomness model. The high level idea is pretty simple and it follows what we saw before
with the GMW compiler: each party commits to their inputs and randomness for the
semi-honest protocol, broadcasts their messages each round, and uses zero-knowledge
proofs to show that each message is the one that it’s supposed to be. Additionally, their
work [IOZ14] presented a compiler that could transform any cryptographic preprocessing
phase that is secure with abort into one supporting identifiable abort. The reader might
be familiar with the impossibility result in [IOS12] and find this result impossible, but
this approach manages to sidestep this barrier by depending on black-box OT protocol
usage instead of an ideal OT functionality. So this is the first identifiable abort con-
struction that only requires black-box access to cryptographic primitives, particularly an
adaptively secure OT protocol and a broadcast channel. However, the construction relies
on adaptively secure OT in the preprocessing phase and on computationally expensive
zero knowledge used to prove correct protocol execution.

Building on [IOZ14], there was a surge in trying to improve ID-MPC and bring it closer
to “practical” efficiency. Baum et al. [BOS16] introduced an identifiable abort protocol
for arithmetic circuits in the preprocessing model where the online phase is a variant of
BDOZ [BDOZ11] that can identify cheaters. Although their solution avoids adaptively
secure OTs, the preprocessing phase overhead is about n (which means that their protocol
takes about n times more than the the computation of non-identifiable protocols) and
uses cheater identification for lattice-based cryptography, which is not efficient in practice.
Spini and Feher [SF16], modify the SPDZ protocol to allow for cheater identification by
ensuring that only correct shares are opened. Their identifiable preprocessing approach,
however, also relies on the same costly methods as [BOS16], including verifiable decryption.
Cunningham et al. [CFY17] use Pedersen commitments to detect cheaters in the online
phase, which restricts the computation to specific finite fields and makes preprocessing
resource-intensive, as these commitments must be generated during preprocessing. Finally,
Baum et al. [BOSS20] present an ID-MPC protocol for boolean circuits that operates in a
constant number of rounds and employs cryptographic primitives in a black-box manner.
Their method avoids public-key operations post-setup and complex zero-knowledge tools
but is restricted to boolean circuits and incurs significant overhead from reconstructing a
large garbled circuit via multiparty BMR [BMR90].

12

2.1. MPC with Identifiable Abort

2.1.2. Our Contributions

Our paper [BMRS24] introduces a simpler approach to identifiable abort. We construct
an efficient MPC protocol that supports identifiable abort for arithmetic circuits over
large fields. The standout feature of the protocol lies in its simple yet effective online
phase, which leverages pairwise information-theoretic MACs. This design follows the
approach used in the BDOZ protocol [BDOZ11] for secure-with-abort protocols.

The simplicity of the online phase has practical implications: the preprocessing step
only needs to generate standard authenticated multiplication triples. This, in turn,
minimizes the overhead typically associated with adding identifiable abort functionality.

The key idea enabling identifiable abort is a novel compiler that transforms specific
sender-receiver protocols -where one party has private inputs- into protocols that support
cheater identification. Unlike the compiler from [IOZ14], which is limited to preprocess-
ing protocols and requires them to be adaptively secure, our new compiler lifts these
restrictions, making it more versatile and applicable in a broader range of settings. In
summary, our protocol combines the simplicity and efficiency of BDOZ with the added
features for cheater identification, supported by lightweight preprocessing making it a
step forward in practical MPC.

Related Work

Having already mentioned works that seem foundational to the notion of identifiable
abort, in this section we will mention constructions that offer identifiable abort but
usually in more restricting settings. Brandt et al. [BMMM20] and Simkin et al. [SSY22]
independently explored methods to achieve dishonest-majority MPC with identifiable
abort, relying on correlations shared by fewer than all n parties. Cohen et al. [CGZ20]
investigated two-round MPC in a dishonest-majority setting with broadcast, analyzing
when identifiable abort can be achieved under different broadcast scenarios. Damgård et
al. [DMRSY21] extended this analysis to honest-majority settings. Later, Damgård et
al. [DRSY23] examined necessary setups for two-round identifiable abort in the plain
model, while Ciampi et al. [CRSW22] presented a four-round solution for ID-MPC under
the same conditions.

If we relax malicious security to covert security, Faust et al. [FHKS21] and Scholl et
al. [SSS22] proposed compilers that lift passively secure MPC to covertly secure MPC
with identifiable abort (with dishonest majority) using time-lock puzzles and Attema
et al. [ADEL22] removed the need for time-lock puzzles in the honest majority setting.
These methods actually support a stronger model, called publicly verifiable MPC, which
implies identifiable abort.

In the honest majority setting, using framing-free designated-verifier zero-knowledge
proofs, Hazay et al. [HVW22] presented an alternative to the IOZ14 compiler.

Chen et al. [Che+21] developed an efficient identifiable abort protocol for RSA key
generation with dishonest-majority security. Their efficiency savings come mainly from
the model they use to circumvent the pairwise interaction barrier, by using a party called
a coordinator, who is able to aggregate-and-broadcast.

13

2. Better MPC - Security

Recently, Cohen et al. [CDKs24] proposed another identifiable abort approach that,
like our work, avoids the adaptive OT requirement in [IOZ14]. Their method focuses on
revealing committed inputs if cheating occurs, rather than using random tape openings
to verify protocol messages as in our approach. Cohen et al. [CDKs24] rely on a special
committed OT functionality instead of direct use of protocol messages.

Challenge of Adaptive Security and Identifiable Abort

The compiler from [IOZ14] offers a simple way to achieve identifiable abort in a prepro-
cessing protocol by having each participant commit to a random tape and then running
a secure-with-abort protocol. If the protocol aborts, participants open their committed
random tapes, enabling others to identify the cheater by re-running a local copy of the
protocol. Since preprocessing is input-independent, this approach generally does not
compromise privacy.

A challenge here is simulating the view for corrupted parties. If the protocol aborts,
the simulator must open honest parties’ tapes that are consistent with what the adversary
has already seen. This is trivially done using adaptive primitives and this is where this
seemingly natural requirement for adaptive security comes from. Some attempts [BDD20;
BOSS20] have avoided adaptive security but didn’t manage to give a construction for
arbitrary fields.

2.1.3. Some Preliminaries
In this section we will briefly talk about about some of the terms that are mentioned to
improve readability. Full preliminaries can be found in Section 6.2.

A Message Authentication Code (MAC) ensures both the integrity and authenticity of
a message exchanged between two parties. Given a message m and a secret key k a MAC
scheme generates a short, fixed-length tag t that is unique to the message-key pair. The
recipient can verify the tag to confirm that the message was neither altered nor forged.

A Vector Oblivious Linear Evaluation (VOLE) correlation consists of two vectors u,w
held by PA, and a value ∆ and a vector v held by PB, such that w = u ·∆ + v. The
value ∆ and v are chosen uniformly at random.

One can view a VOLE correlation as an information-theoretic MAC on the vector u of
PA. Assume that PA could produce a pair of vectors u′,w′ with u′ ̸= u such that the
VOLE correlation holds, along with the original u,w which means that we would have:

w = u ·∆ + v, w′ = u′ ·∆ + v

In order for this to hold we need (w[i]−w′[i])/(u[i]− u′[i]) = ∆ (where i is the index
in which u and u′ differ). This can be achieved only if PA knows the secret ∆ so it can
forge a MAC on a different value u′. However, ∆ is chosen randomly from a set of large
size so the probability of a correct guess is negligible if we pick the set properly.

The important thing to know about the BDOZ protocol from [BDOZ11] is that it
uses pairwise information-theoretic MACs, overcoming previous works that only offered
computational security in the online phase. Every party Pi has a set of MACs for its

14

2.1. MPC with Identifiable Abort

share xi of a shared value x under the keys for every other party as well its own keys to
verify the MACs of the other parties.

2.1.4. Informal Technical Overview

Online Phase To get to identifiable abort, we utilize linear secret sharing where partici-
pants are committed to their shares using linearly homomorphic commitments. In [BOS16]
we see how having commitments that support multiple receivers and identifiable abort
can be used to open secret shared values by verifying each share’s commitment. Also,
using a preprocessing phase to generate authenticated multiplication triples where each
share is committed using homomorphic commitments, we can get an MPC protocol that
uses the linearity of the commitments and Beaver multiplication to compute the desired
function. The way that they instantiated their information-theoretic commitments was
pretty complex, resulting in a more expensive preprocessing phase than the BDOZ
scheme [BDOZ11; DPSZ12].

Our online phase follows this approach, using preprocessed triples and identifiable
commitments. However, our protocol manages to have drastically better efficiency
because of how we generate identifiable abort-compatible multiplication triples during
preprocessing and how we construct identifiable, linearly homomorphic commitments.

Preprocessing Phase In the preprocessing phase, our goal is to create additive secret
shares of random multiplication triples over a large field, committed through linearly
homomorphic commitments. To this end, parties first run a secure-with-abort protocol,
ΠTrip, to generate unauthenticated triples and then commit to each share with homomor-
phic commitments. To verify that the shares are correct we apply a sacrifice-based check,
where one triple is “sacrificed” to validate another.

Now, in order to get identifiable abort in the preprocessing phase we proceed as follows.
First, just as in the IOZ14 compiler [IOZ14], each party commits to their random tape for
the secure-with-abort protocol ΠTrip before running it. If ΠTrip aborts, parties open their
tapes and are able to run the protocol to find out who cheated. This process requires that
the protocol has verifiable transcripts, allowing consistent identification of cheaters based
on everyone’s view of the randomness. This property is known as identifiable cheating.
We show that this property can be added easily on any secure-with-abort protocol by
adding digital signatures to all pairwise messages, ensuring that a record exists to verify
any protocol deviations.

We also tackle the challenge of simulating ΠTrip while bypassing the need for adaptive
security. In [BOSS20], we see how the simulator runs a local honest execution of ΠTrip
in order to produce the messages of the honest parties. Now, although it can’t extract
the adversary’s inputs (from the protocol execution), if there is an abort the simulator
can extract the shares of the multiplication triples from the commitment functionality.
This simple idea is the driving force behind why the simulator doesn’t need to adaptively
corrupt honest participants since the honest execution is sufficient.

Finally, if ΠTrip itself is successful but the triple sacrifice check fails (because a corrupt
party committed to the wrong share), parties can open their random tapes from ΠTrip to

15

2. Better MPC - Security

recover all shares and verify them by comparing the committed shares in the homomorphic
commitment scheme.

Building Identifiable, Homomorphic Commitments We use pairwise information-
theoretic MACs to implement homomorphic commitments. Each party’s commitment
is authenticated by a MAC shared with every other party like in the BDOZ protocol.
These MACs can be efficiently generated with vector oblivious linear evaluation (VOLE)
protocols that rely on learning parity with noise assumptions [BCGI18; WYKW21;
BCGIKRS19]. However, going back to the impossibility result due to Ishai, Ostrovsky,
and Seyalioglu [IOS12], identifiable abort is impossible using pairwise information theoretic
MACs in a black box way.

Ideally we want to use the same commit-and-open technique that we used for the
triple generation phase. If there is an opening that fails then the parties will open the
randomness that was used to generate the MACs in the VOLE protocol and from those,
they can re-run the execution and find who cheated.

Unfortunately it’s not going to be that simple. The commit-and-open technique only
works in preprocessing protocols; opening all parties’ random tapes in the online phase
would leak private inputs. Additionally, we still have to deal with the issue of adaptivity
that was mentioned before.

Compiling Sender-Receiver Protocols to Identifiable Abort To manage to get around
the issues with adaptive security in the online phase, we restrict our compiler to a class
of sender-receiver protocols where only one participant (the sender) holds private input.
We will see how this will not pose a problem in constructing MPC. Our compiler makes
use of the underlying secure-with-abort protocol but doesn’t face the limitation of IOZ
compiler which was only for preprocessing protocols. This makes it suitable for use with
any linearly homomorphic commitment scheme, which we instantiate using VOLE to set
up the MACs.

How do we make use of just one party having input? In this case we are able to
follow the same strategy as in the preprocessing phase but now if we only require the
receivers to open their random tapes, then no private input is revealed. By making the
assumption that receivers don’t communicate with each other, receivers can still detect a
dishonest sender. By this we don’t mean that the expectation is that corrupt receivers
don’t communicate to gain security, rather that it is a protocol specification.

There is a problem though. Even if the receivers don’t have private inputs, they might
have private outputs which can’t be revealed. Because of this we need to separate how
we handle aborts in the case where a sender aborts versus when a receiver aborts. In
the case where a sender aborts, receivers send evidence to the sender in private, who
selects and publishes a proof. If a receiver is responsible for an abort, they open their
view which shows that the sender cheated (because of the restriction we imposed on the
communication between receivers). Since the private output of the receiver depends on
the corrupt sender’s input, it’s ok to reveal it.

16

2.1. MPC with Identifiable Abort

Avoiding Adaptive Security with Online Extractability When talking about using an
honest execution of the protocol to extract adversarial inputs, that will in turn help in
the simulation of all the identification stages, we hinted towards the idea that the full
power of adaptivity is not needed in order to achieve this. Based on this observation,
we define online extractability, a weaker but sufficient property that allows inputs from
corrupted parties to be extracted without adaptive simulation by making imperceptible
adjustments to the common reference string (CRS) or other hybrid functionalities. This
actually is how many UC simulators work in practice. Online extractability thus allows
honest execution simulation without needing adaptive corruption.

2.1.5. Efficiency Analysis

Efficiency Compared with MPC with Abort Identifiable abort is an added property
so in order to evaluate its efficiency we study how much overhead is added to a secure-
with-abort protocl when we transform it. We compare our protocol to the two versions
of the Le Mans protocol [RS22]. In the first version, called Le Mans 1 in Table 2.1 (from
[BMRS24]), the protocol generates what are called “partial triples” and only authenticates
these triples during the online phase. This version has an asymptotic preprocessing cost
of O(n2 log |C|) communication (where |C| represents the circuit size) if pseudorandom
correlation generators are used for OLE and VOLE correlations. Depsite the use of PCGs,
the the local computation is still O(n2|C|). In comparison, if non-silent OLE or VOLE
protocols (like those using homomorphic encryption or OT) are used, communication
costs would also be O(n2|C|). The online phase then costs each party 12n field elements.

Le Mans’ second version authenticates and verifies partial triples during preprocessing,
which increases the preprocessing cost to O(n2|C|) field elements, but it reduces the
online phase cost to 4n elements per party.

Our protocol’s preprocessing phase has the same base cost as Le Mans 1, plus an
extra 2(n− 1)|C| field elements per party sent through point-to-point channels. For the
online phase, we use a standard BDOZ phase with authenticated triples and signatures,
raising the cost by O(n) which will ultimately set the online communication per party at
2(n− 1)|C| elements in an honest execution.

A corrupted adversary can always force complaint procedures, which will in turn
force messages to go through secure broadcast channels rather than point-to-point links,
effectively doubling the round complexity. Additionally, although an adversary can abort
the protocol requiring parties to reveal their views, the cost of resolving an abort in our
protocol remains cheap. It requires only local computations to compute the messages
that should have been sent, avoiding zero-knowledge proofs which incur significant
computational costs.

Efficiency Compared to Other ID-MPC Protocols We also compare our protocol
with previous identifiable abort constructions, the closest to our work being by Baum et
al. [BOS16] and Baum et al. [BOSS20].

[BOS16] uses an O(n3) broadcast complexity per multiplication gate in preprocessing
since O(n2) verifiable decryptions of RLWE ciphertext decryptions are required. By

17

2. Better MPC - Security

Protocol Building blocks IA Preprocessing cost Online cost
Le Mans, v1 (V)OLE ✗ n2 ×OLE∗ 12n
Le Mans, v2 (V)OLE ✗ n2 ×OLE∗+O(n) 4n
[BOS16] depth-1 HE ✓ O(n3)† O(n2)‡
Ours (V)OLE ✓ n2 ×OLE∗+O(n2) ‡ O(n2)‡
∗ Random, pairwise OLE and VOLE correlations. Can be generated with amortized o(1)

communication using variants of LPN [BCGIKRS19; BCGIKS20b].
† Must be broadcast
‡ Corrupted party can force to be broadcast

Table 2.1.: Comparing efficient MPC protocols with and without identifiable abort. Preprocess-
ing cost reflects the cost per multiplication in the preprocessing phase, in terms of
building blocks (OLE/VOLE) plus total communication in field elements.

contrast, even if all messages in our protocol are forced to be broadcast, the broadcast
cost is only O(n2) per multiplication. This improvement stems from the use of our
information theoretic MACs that are cheaper to set up than the ones in [BOS16]. For
the online phase, both our protocol and [BOS16] have an O(n2) complexity.

We expect our protocol to be significantly faster than [BOS16] (although there is
no concrete implementation) due to the ability to use Pseudorandom Correlation Gen-
erator (PCG) techniques for VOLE and OLE correlations, which are known to be
much more communication-efficient than homomorphic encryption (HE)-based meth-
ods [BCGIKS20b]. The complex preprocessing requirements in [BOS16] make it chal-
lenging to use practical PCG techniques over HE and result in an O(n3) asymptotic
overhead.

The work of [BOSS20] is not directly comparable to ours (in terms of setting) since
it uses garbled circuits for Boolean circuits, managing to have a constant-round online
phase. In contrast, our protocol supports computations over large fields Fp with a
round complexity depending on the circuit depth. Both protocols leverage homomorphic
commitments in the offline phase: while [BOSS20] requires each party to commit to
garbled circuit keys, our approach commits to the shares. The commitment in [BOSS20]
uses a non-interactive vector commitment whereas we use VOLE-based commitments.
Extending our commitments to their setting is an interesting idea for future work.

2.2. MPC with Friends and Foes
We talked about corruption thresholds in MPC. We saw how, generally, MPC protocols
are designed with a security threshold t, such that as long as no more than t participants
collude, the protocol’s guarantees of privacy and correctness are maintained. If, however,
more than t parties deviate from the protocol, it may compromise the privacy of the
remaining n− t participants.

In practice, however, we would prefer that even our honest counterparts, who aren’t
colluding with an adversary don’t gain access to our private inputs. Alon et al. [AOP20]

18

2.2. MPC with Friends and Foes

introduced MPC with Friends and Foes (FaF security), a model that precisely incorporates
this notion. It is important to recognize that an honest party may not remain honest
indefinitely. If such a party were to become corrupted later, any sensitive information it
acquired during the protocol (for instance, another party’s bank account password) could
still be exploited. Moreover, most people would hesitate to share something as personal
as their bank account password even with their closest friends. This naturally leads to
the consideration of a model where each honest party is treated as semi-honest, while a
malicious adversary operates simultaneously in the system.

One way honest parties can see the private information of others is if the protocol
instructs them to do so. There are MPC protocols (for example, [IKP10; IKKP15; PR18])
where if cheating is detected, any parties identified as honest (through some mechanism)
they are instructed to reveal their private inputs to the other honest parties.

Alternately, honest parties might receive the view of the adversary, thus exposing them
to infomartion about the other parties. Take the following example. It’s very common in
MPC protocols to rely on some (t+ 1)-out-of-n secret sharing scheme (meaning that it
can withstand t corruptions). If the adversary who controls t shares sends these shares to
an honest party, with the newly acquired information it now has the power to reconstruct
the inputs of all the other parties. This seems like a more realistic model, one in which
honest parties might be tempted to not stay honest if the opportunity arises.

Informally, a protocol achieves (t, h∗)-FaF security if it behaves like standard MPC with
respect to any adversary A, meaning there exists a simulator SA capable of producing a
view indistinguishable from that of the t corrupt participants without needing to know
the inputs of the honest parties. Additionally, for FaF security, there should also exist a
separate simulator SAH∗ for every subset of up to h∗ honest participants, able to create a
view indistinguishable from the honest participants without having access to the inputs
of the remaining honest parties. This ensures that no messages from corrupt parties can
help any group of h∗ honest participants to learn more about the other honest parties’
inputs.

Alon et al. defined two versions of FaF security:

1. Weak FaF. In this model, while SA’s output must be indistinguishable from the
real view of the t corrupt participants, and SAH∗ ’s output must be indistinguishable
from the real view of the h∗ honest participants, these two views are not required
to be mutually consistent. That is, the simulated views may differ when considered
jointly.

2. Strong FaF. Here, SA and SAH∗ ’s outputs must be jointly indistinguishable from
the combined real views of the t corrupt and h∗ honest parties.

These two notions of FaF security can be viewed in terms of adversarial influence: strong
FaF accounts for cases where adversaries receive feedback on honest parties’ knowledge,
while weak FaF assumes no feedback. The main difference is that in the strong notion of
FaF security we want the simulated views of A and AH∗ to be simulatable together.

19

2. Better MPC - Security

(t, h∗)-FaF

(t, t + h∗)-
BoBW

(t, h∗)-MA

Theor
em

1

/

T
he

or
em

2
/

Theorem
3

/

[AOP20]

/

T
heorem

5
/

Theorem
4

/

Figure 2.1.: Relationships of FaF to other notions. MA denotes security against mixed adver-
saries; BoBW denotes (active / passive) best of both worlds security.

2.2.1. Our Contributions

In this paper, we address two gaps identified in Alon et al.’s constructions and further
examine the relationships between FaF security and other security models. Our primary
focus is on FaF security with guaranteed output delivery (GOD).

First, we present a three-round construction that achieves weak FaF security with
corruption threshold 2t + h∗ < n in the CRS (common reference string) model. This
is the first construction that is both round-optimal and threshold-optimal (but it’s not
strong FaF). Secondly, we introduce a construction achieving strong FaF security for the
same threshold, 2t+ h∗ < n. This is the first strong FaF construction to achieve optimal
threshold, though the round complexity depends on the function’s multiplicative depth
and also the construction relies on correlated randomness.

Lastly, we study FaF security’s connections with other security models. While Alon et
al. showed that mixed adversary security (where an adversary can perform t active and
h∗ passive corruptions) does not imply FaF security in the computational setting, we
prove the reverse: FaF security does not imply mixed adversary security. Additionally,
we consider Best of Both Worlds (BoBW) security [IKLP06; Kat07], which allows an
adversary either t active corruptions or t + h∗ passive corruptions, but not both. We
demonstrate that FaF security neither implies nor is implied by BoBW security. These
findings are summarized in Figure 2.1 from [MRY23]1.

Prior Work

Alon et al. explored the foundational aspects of FaF-secure MPC by identifying certain
limitations and offering initial constructions. Their work is mostly in the guaranteed
output delivery setting.

1The theorem numbers on the figure correspond to the theorem numbers in [MRY23].

20

2.2. MPC with Friends and Foes

Construction FaF Level Security Threshold Rounds Assumptions Preprocessing
[AOP20]

GMW-based Weak Comp 2t + h∗ < n poly(κ) OT & OWP no
DI-based Strong Comp 5t + 3h∗ < n 3 PRG no

BGW-based Strong Stat IT 2t + 2h∗ < n poly(κ) Broadcast no
BGW-based Strong Perf IT 3t + 2h∗ < n poly(κ) None no

This Work

TFHE-FaF Weak Comp 2t + h∗ < n 3 Lattices &
Broadcast no

BGW-BT-Comp Strong Comp 2t + h∗ < n O(κ) ETP Beaver
triples

Figure 2.2.: Our constructions compared to those of [AOP20]. Notation: n denotes the total
number of participants, t denotes the bound on the number of corruptions (foes), h∗

denotes the bound on the number of honest parties against whom we want privacy
(friends), and κ denotes the multiplicative depth of the circuit being evaluated.

Limitations The MPC parameters that were studied by Alon et al. are: round complexity
and corruption thresholds. They demonstrated that two-round MPC with weak FaF
security (and consequently, strong FaF security) and GOD is impossible by the simple
observation regarding the impossibility of computing the AND functionality in two rounds
against 2 corrupted parties in [GIKR02]. This two-round impossibility can be viewed as
the reason why the leakage of honest parties’ private inputs in the two-round protocol
in [IKP10] in necessary.

The 2-round impossibility was shown even at minimal thresholds (t = h∗ = 1), implying
that three rounds is the best we can hope to achieve. Furthermore, they showed that
certain threshold settings make even weak FaF security unattainable, regardless of the
round complexity. Specifically, if n is the number of participants, t is the maximum
number of corrupt parties, and h∗ is the number of honest parties who should learn
northing about other honest parties’ inputs, then:

• Weak FaF security with GOD is infeasible if 2t+ h∗ ≥ n.

• Information-theoretic (statistical) weak FaF security with GOD is impossible if:
– 2t+ 2h∗ ≥ n (even with broadcast).
– 2t+ 2h∗ ≥ n or 3t ≥ n (without broadcast).

• Information-theoretic (perfect) weak FaF security with GOD cannot be achieved
when 3t+ 2h∗ ≥ n, even with broadcast.

Alon et al. present a three-round construction achieving strong FaF security for corrup-
tion threshold satisfying 5t+3h∗ < n. They also present a threshold-optimal construction
(with 2t + h∗ < n) that only guarantees weak FaF security. These constructions are
summarized in Figure 2.2, which is modified slightly from [MRY23].

Research on FaF security falls within the broader study of security model robustness2.
Robust security is a valuable feature as it mitigates denial-of-service risks. In this area,

2This time we mean it in slightly more technical terms. We mean that the model is able to maintain its
guarantees even in the face of changing adversarial conditions.

21

2. Better MPC - Security

Koti et al. [KPPS21] proposed a robust privacy-preserving machine learning (PPML)
framework for multiple ML tasks, Dalskov et al. [DEK21] introduced a novel four-party
honest-majority MPC protocol with active security and guaranteed output delivery, and
in [KPRS21], the authors presented an actively secure 4-party protocol for secure training
and inference.

Although research on FaF security is relatively new, concurrent work has yielded
encouraging results. For example, Koti et al. [KKPG22] proposed an efficient (1,1)-FaF
secure five-party computation (5PC) protocol, while Hedge et al. [HKKPPP22] established
the necessity of semi-honest oblivious transfer for FaF-secure protocols with optimal
resiliency and introduced a ring-based 4PC protocol that guarantees fairness and GOD
with one semi-honest and one malicious adversary.

2.2.2. Informal Technical Overview
Three-Round Weak FaF Construction Our three-round protocol uses decentralized
threshold fully homomorphic encryption (dTFHE), following Gordon et al.’s approach
[GLS15]. In the first round, participants exchange public keys. In round two encrypt
their inputs under all the public keys, and broadcast the ciphertexts. In the third round,
after each party has received the ciphertexts, they compute the function homomorphically
and broadcast partial decryptions, allowing everyone to locally combine these partial
decryptions to obtain the output. Gordon et al. showed that this protocol provides
guaranteed output delivery with a dishonest minority. We prove that it also achieves weak
FaF security when 2t+ h∗ < n. Intuitively, security of such a dTFHE scheme ensures
that the joint view of the active and passively corrupt parties comprising of (t+h∗) secret
keys is not enough to leak information about the inputs of the honest parties. Correctness
of such a scheme ensures that even if up to t parties abort, guaranteed output delivery is
achieved because the partial decryptions sent by the remaining n − t > t + h∗ parties
suffice to compute the output.

Strong FaF Construction Our strong FaF construction is based on the BGW proto-
col [BGW88]. First, we show that BGW with Beaver triple preprocessing [Bea92] achieves
guaranteed output delivery with an adaptive mixed adversary that can perform t fail-stop
corruptions (similar to passive corruptions, except participants may also abort at any
step) and h∗ passive corruptions, provided 2t + h∗ < n. We then use Canetti et al.’s
compiler [CLOS02], which involves adaptively secure commitments and zero-knowledge
proofs, to allow t active corruptions and h∗ passive corruptions. Finally, building on
Alon et al.’s insight that adaptive security implies strong FaF, we obtain our result.

Relation of FaF to Other Notions We analyze the relationships between FaF, Best
of Borth Worlds, and Mixed Adversary security. These notions seem very close but
suprisingly they are incomparable. In Best of Both Worlds (BoBW) the adversary can
make t active or t + h∗ passive corruptions but not both, and in Mixed Adversaries,
the adversary can make t active and h∗ passive corruptions. We present protocols that
achieve one notion but not the others. Together with the findings of Alon et al., our

22

2.2. MPC with Friends and Foes

results illustrate that these security models are fundamentally distinct. We summarize
these relationships in Figure 2.1 from [MRY23].

23

3. Faster MPC - Efficiency

3.1. PCGs, PCFs, and the Preprocessing Paradigm
In the introduction (Section 1.1) we talked about how modern secure multi-party compu-
tation (MPC) protocols are generally divided into two key phases: an offline phase that’s
independent of the function being computed and an online phase. In the offline phase
the protocol participants work together to generate correlated randomness, which will be
used later in the online phase. This correlated randomness enables efficient computation
of the function of interest. The tradeoff that is being made is that this setup achieves a
more efficient online phase at the cost of a resource-intensive preprocessing stage.

Building on the work by Boyle et al. [BCGI18; BCGIKS20b; BCGIKS19], major
improvements have been made in the efficiency of generating correlated randomness,
based on the inception of pseudorandom correlation generators (PCGs) and pseudorandom
correlation functions (PCFs) [BCGIKS20a]. These tools enable parties to expand a short
seed into larger pseudorandom correlations locally, boosting efficiency in MPC protocols
(in the preprocessing model) by reducing the interaction cost during correlated randomness
generation.

Recent years have seen numerous PCG and PCF constructions for various types of use-
ful pseudorandom correlations, including oblivious transfer (OT) correlations [BCGIKS19;
BCGIKRS19] and Beaver triple correlations [BCGIKS20b; BCCD23]. Generic frameworks
for constructing PCGs and PCFs for a broad range of correlations rely on multi-key fully
homomorphic encryption (FHE) or homomorphic secret sharing over circuits [DHRW16;
BCGIKS19], and even support any efficiently computable correlations using indistin-
guishability obfuscation (iO) [DHRW16; ASY22]. However, these approaches tend not
to yield practical efficiency. On the other hand, concrete efficiency can be achieved by
constructing PCGs from variants of the Learning Parity with Noise (LPN) assumption
or group-based assumptions. These PCGs, and even some PCFs [OSY21; BCGIKS20a;
BCGIKRS22], are highly efficient but only cover a limited range of correlations, such as
OT and Beaver triples.

Most PCG and PCF designs are restricted to generating correlations as additive secret
shares, where each participant receives an additive share of the pseudorandom correlation.
This restriction poses a barrier to generating certain complex correlations that cannot
be naturally represented with additive secret shares. Examples include cases where
pseudorandom permutation correlations or Shamir secret shares are required. Despite
being natural and useful goals, even high-level primitives like multi-key FHE fall short
of producing these non-additive correlations. The only known method for achieving
such “non-additive” correlations involves indistinguishability obfuscation (iO) paired
with other cryptographic assumptions [DHRW16; ASY22].

25

3. Faster MPC - Efficiency

Additionally, a PCF for pseudorandom permutations enables a non-interactive single
secret leader election (SSLE) protocol, wherein the elected leader is the party that was
assigned the lowest permutation value. This application can be valuable for proof-of-stake
cryptocurrencies and other distributed systems [BEHG20].

3.2. Our Contributions

Our paper [CKMSS24] initiates the study of PCGs and PCFs specifically for pseudorandom
permutation correlations.

Using an n-party pseudorandom permutation correlation, each party independently
generates part of a pseudorandom permutation over the set {1, . . . , n}, ensuring that no
subset of n− 2 corrupt parties can determine the entire permutation. A PCG (or PCF)
for pseudorandom permutations can produce a large number, ℓ, of such correlations while
keeping communication complexity low, e.g., scaling with polylog(ℓ) after an initial setup.

Our contributions include designing three-party (n = 3) PCGs and PCFs using
assumptions that are not known to imply iO. Specifically, we construct a PCG for
permutations using Quasi-Abelian Syndrome Decoding (a well-known LPN variant) and
a PCF for permutations using Homomorphic Secret Sharing (HSS) [BGI16a; BCGIO17]
for branching programs combined with a PRF in NC1, which can be instantiated under
the DCR [OSY21; RS21], LWE [BKS19], or class group assumptions [ADOS22]. While
our HSS-based construction remains primarily theoretical, our LPN-based PCG offers
practical efficiency which we demonstrate through benchmarking.

This work establishes the first concrete feasibility result for constructing PCGs/PCFs for
non-additive, reverse-sampleable correlations without having to rely on heavy primitives
such as iO. Beyond the theoretical contributions, our constructions have practical
applications in areas such as anonymous communication protocols and single secret leader
election (SSLE). For instance, we demonstrate that a PCG can replace the costly “offline”
preprocessing protocol used by Studholme and Blake [SB07] to generate pseudorandom
permutations, enabling an efficient implementation of a Dining-Cryptography network
for anonymous broadcast with optimal communication costs. Here, each participant
uses a PCG to locally decide where to place their message on a shared bulletin board,
ensuring that message origins remain anonymous. This pseudorandom permutation
guarantees that each participant writes to a unique slot, eliminating the redundancy
found in previous works [CBM15; GJ04].

Our results are summarized in Table 3.1 (from [CKMSS24]), where we compare our
methods with prior approaches.

3.3. Informal Technical Overview

Background

To set the stage for our overview, we first provide an introduction to PCGs and PCFs.
Formal definitions can be found in the detailed discussion in Section 8.3.

26

3.3. Informal Technical Overview

Assumption
Target

Correlation # parties
PCF [DHRW16] iO Any reverse-samplable 2
PCF [ASY22] multi-key FHE + iO Any reverse-samplable Any
PCF [ASY22] multi-key FHE + iO + ROM Any Any
PCG (Section 8.4) Quasi-Abelian SD Permutations (biased) 3
PCF (Section 8.4) HSS+PRF in NC1 Permutations 3

Table 3.1.: Summary of PCGs and PCFs for non-additive correlations. “Reverse-samplable”
refers to cases where, given the outputs of a sample’s corrupt participants, the honest
participants’ outputs can be efficiently simulated to appear indistinguishable from
the true sample.

A PCG for a two-party correlation C consists of two algorithms:

1. Gen(1λ) → (k0, k1): A randomized algorithm that, given a security parameter λ,
generates a pair of short, correlated seeds (k0, k1).

2. Expand(kσ)→ Rσ: A deterministic algorithm that expands a seed kσ into a long
output Rσ.

For PCFs, the expansion algorithm Expand is replaced by an evaluation algorithm Eval,
which takes an additional input x to produce an instance of the correlation.

The security requirement for PCGs is that the joint outputs (R0, R1) must be indistin-
guishable from the desired correlation C, both to external observers and to each party
that holds only one of the seeds. Access to a short seed should not allow an adversary
to infer any additional information about the other party’s pseudorandom string (other
than what is inherently revealed by their own pseudorandom string). Slightly more
formally, we require that an adversary, when given one of the short seeds kσ, is unable to
distinguish R1−σ from a randomly chosen pseudorandom string conditioned on (R0, R1)
being correlated.

This security definition requires the target correlation to be reverse sampleable. This
roughly says that it is possible to efficiently sample from the conditional distribution
of R1−σ given Rσ. PCFs have a comparable security requirement, with the addition of
needing the evaluation of R0 and R1 on-the-fly.

Examples of useful additive1 correlations that have been studied in previous works are:
random oblivious transfer (OT), oblivious linear function evaluation (OLE), and Beaver
triples.

An example of a non reverse-sampleable correlation that is useful in preprocessing
secure two party computation is the following: one party has a garbled circuit, and the
other has the labels for the wires. The security guarantees of the garbling scheme do not
allow for the labels to be reverse-sampled from the circuit meaning that this correlation
is not reverse-sampleable.

1This means that the outputs (R0, R1) form additive secret shares of a sample from a distribution.

27

3. Faster MPC - Efficiency

Main Ideas and Approach

Our three party construction, has the following parties: Alice, Bob, and Carol. We think
that it will be beneficial to the reader if we first go over our initial attempt which ended
up being unsuccessful. We will then mention the fixes that ultimately gave us our PCG
and PCF construction.

First Try To illustrate a three-party permutation, we can start by interpreting the
permutation over the set {0, 1, 2} as providing pseudorandom shares of zero, given that
the sum of a valid permutation’s values is always 3, which is equivalent to zero in the field
F3. However, while this can be correct, it doesn’t ensure that what we have is indeed a
permutation. For example, in the three-party case, if all zero shares are the same in F3,
each party would hold the same output, which would not constitute a valid permutation.
Thus, the first roadblock that we meet is that we need each party’s share to be unique.
We note that it’s sufficient that the parties’ shares a+ b+ c = 0 with a ̸= b. This ensures
that a, b, and c are pairwise distinct.

Ensuring Unique Shares Our initial insight is that, for two parties, say Alice and Bob,
distinct shares can be generated by creating shares of a pseudorandom bit µ ∈ {0, 1} over
F3. Now we can have Alice get a ∈ F3 and Bob get b ∈ F3, such that a+ b (mod 3) = µ
and their output is a and 2 − b respectively then their values will be distinct because
2− b = a+ 2− µ (mod 3). Note that privacy is achieved because Alice has no way of
knowing if Bob’s output is a+ 1 or a+ 2.

With this first obstacle out of the way we can focus on Carol’s share. Unfortunately,
following the same approach wouldn’t work out of the box. If we could use the same
idea for Alice and Carol, ensuring Carol’s output is distinct from both Bob’s and Alice’s
without changing Alice’s share, how would Carol’s share correlate with Bob’s to maintain
uniqueness while keeping Alice’s share consistent? This problem of coordinating the
shares among three parties forms the core of our solution, and we provide two different
methods for resolving it in our PCG and PCF constructions for permutations.

General Template for Construction Assuming we could coordinate the shares among
Alice, Bob, and Carol as described, a general template for the three-party construction
emerges. If Alice and Bob, as well as Alice and Carol, could each generate a pseudorandom
subtractive share of a bit µ and 1− µ, respectively, with Alice keeping the same share a
in both cases, then Carol’s share c would automatically be distinct from both Alice’s and
Bob’s values. Expanding the parties’ outputs, we have:

Alice’s output: a := x

Bob’s output: b := x+ 2− µ

Carol’s output: c := x+ 1 + µ

Here, a, b, and c are pairwise distinct because:

28

3.3. Informal Technical Overview

• If a = b, then µ = 2,

• If a = c, then µ+ 1 = 0,

• If b = c, then 2µ = 1 (mod 3).

Each of these statements is false for µ ∈ {0, 1}. In essence, the solution requires Bob and
Carol to hold shares of pseudorandom bits µ and 1− µ, respectively, with Alice’s share
remaining consistent across both µ and 1− µ.

Overcoming Technical Challenges

Fixing Alice’s Share Across Correlations In order for Alice’s share to remain consistent
across both instances of µ and 1−µ we need “programmability”. Existing PCG and PCF
constructions that allow for programmable correlations [BCGIKS19; BCGIKS20b] can
ensure that µ remains consistent across both shares but even with programmability, Alice
would receive two independent shares -one for each correlation- so the approach described
before doesn’t work. To resolve this, we introduce the concept of “doubly-programmable”
PCGs and PCFs.

Doubly-Programmable PCGs and PCFs We extend the notion of programmability
by creating a doubly-programmable PCG (or PCF) that allows one party’s seed to be
generated independently of the correlation itself. This enables us to fix Alice’s seed k0
while generating two separate keys, k1 and k2, corresponding to distinct correlations C1
and C2. Specifically, in our example, Alice can hold k0 to generate a pseudorandom share
x, while Bob and Carol hold k1 and k2 so that:

Expand(k0)− Expand(k1) = µ and Expand(k0)− Expand(k2) = 1− µ.

We formalize this doubly-programmable feature by defining the PCGs and PCFs as
F -programmable, where one seed/key is generated independently of the target correlation
and where the correlation can be expressed as a function f(·) of the pseudorandomness
where f ∈ F . In the above example we see how the programmed function in k2 maps
x 7→ 1− x.

Generating Pseudorandom Bits over Non-Binary Fields

The ability to generate pseudorandom bits in larger fields has significant applications
in MPC, particularly for protocols that require converting shares from one field to
another [IKNZ23; CS10; DFKNT06]. However, generating pseudrorandom bits in F3
poses unique challenges, as efficient protocols typically rely on degree-2 correlations
meanwhile the correlation we need is computed by high degree polynomials.

In our work, we show that in F3, shares of a pseudorandom bit can be obtained by
evaluating a degree-2 polynomial, albeit with a slight bias. This insight is crucial for
our PCG construction, as it allows us to leverage existing degree-2 PCG techniques for
biased pseudorandom bits.

29

3. Faster MPC - Efficiency

To construct a PCF for pseudorandom permutations, we use homomorphic secret
sharing (HSS) [BGI16a] to evaluate a high-degree polynomial that computes a PRF
that outputs a bit. Although low-degree PRFs can help reduce the number of HSS
multiplications needed, this approach remains more theoretical compared to the PCG
construction.

Overview of Our PCG Construction

Our PCG construction for permutations leverages an F -programmable PCG for generating
pseudorandom bits. Starting from existing PCGs for degree-2 correlations in F3, such
as those by Bombar et al. [BCCD23; BBCCDS24a], we use a programmable distributed
point function (DPF) [BGIK22] to achieve F-programmability.

Using this framework, we convert a pseudorandom degree-2 correlation into a biased
pseudorandom bit by defining a bit µ as a share of z2 (mod 3), where z is pseudorandom.
Since z2 results in the set {0, 1} but with a bias toward 1, we achieve an ε-biased PCG
for permutations, suitable for multi-round anonymous broadcast.

Overview of Our PCF Construction

To avoid bias in our PCG construction, an F -programmable PCF for generating unbiased
pseudorandom bits in F3 would be ideal. For this, we combine HSS with an NC1 PRF,
enabling programmable PCFs for unbiased bits in F3

2. This technique, adapted from
Couteau et al. [CMPR23], ensures efficient generation of pseudorandom bits without
introducing bias. When paired with a low-degree PRF, this approach could bring the
construction closer to practical use, with applications such as single secret leader election
(SSLE), where the leader is the party with the lowest permutation value in an anonymous,
non-interactive setting.

2Languages in NC1 can be computed by bounded fan-in circuits of polynomial size and logarithmic
depth or (alternatively) we can say that there is an efficient Turing machine that on input 1n generates
the n-th circuit.

30

4. Stronger MPC - Weaker Primitives

4.1. Pseudorandom Generators (PRGs)

Pseudorandom generators (PRGs) are functions that expand an input, such that the
resulting output is computationally indistinguishable from a random string by any
polynomial-time algorithm. A specific type of PRG are the local pseudorandom generators
(local PRGs), where the output depends only on a constant number of the input bits.
Cryan and Miltersen [CM01] first investigated the feasibility of such local PRGs, with
Applebaum, Ishai, and Kushilevitz [AIK04; AIK08] later demonstrating that PRGs in
NC0 with sublinear stretch can be constructed under widely accepted cryptographic
assumptions, such as those based on the hardness of factoring or the discrete logarithm 1.
They also showed that local PRGs with linear stretch can be obtained under a specific
hardness assumption related to decoding sparsely generated linear codes.

Recently, local PRGs with polynomial stretch have proven useful in numerous cryp-
tographic and non-cryptographic applications. Examples include their use in secure
computation with constant computational overhead [IKOS08], indistinguishability obfus-
cation [JLS21; JLS22], pseudorandom correlation generators and functions [BCGIO17;
BCMPR24], public-key encryption [BKR23], and sublinear secure computation [BCM23].
Outside of cryptography we find them applied to prove hardness-of-learning results [DV21].
As a result, both the construction of polynomial-stretch local PRGs and the cryptanal-
ysis of existing candidates have been an active research focus [Gol00; MST03; BQ09;
App12; OW14; CEMT14; App15; ABR16; AL16; LV17; CDMRR18; AK19; OST19;
Méa; YGJL21; Méa22; Üna23b; DMR23; Üna23a]. All existing local PRG candidates
stem from the proposal by Goldreich in [Gol00], which applies a specific predicate P to
constant-size subsets of the input bits, where these subsets are formed as hyperedges of a
sufficiently expanding uniform hypergraph.

In this paper, we re-evaluate the scope and use of local PRGs and make a key
observation: many established applications of local PRGs don’t require the full capabilities
of local PRGs. In particular, a number of applications only need a local pseudorandom
mapping from n-bit seeds to m-bit strings but do not require that the seeds are sampled
uniformly at random. We formalize this observation by introducing a new concept we
call structured-seed local pseudorandom generators.

1A language is in NC0 if it can be decided by uniform boolean circuits with constant depth and bounded
fan-in.

31

4. Stronger MPC - Weaker Primitives

4.2. Our Contributions
The notion of structured-seed local PRGs extends local PRGs to cases where the seed is
sampled from a specific distribution supported over {0, 1}n (rather than being purely
random). We provide examples where structured-seed local PRGs can seamlessly replace
traditional local PRGs. Specifically, we illustrate the use of structured-seed local PRGs
in:

1. Indistinguishability obfuscation based on well-established assumptions [JLS21];

2. Secure computation with constant overhead [IKOS08];

3. Compact homomorphic secret sharing [BCM23];

4. Learning hardness for disjunctive normal forms (DNFs) [DV21].

In addition to defining structured-seed local PRGs, we propose constructions based on well-
known cryptographic assumptions that do not currently imply the existence of standard
local PRGs. Specifically, we focus on the sparse learning parity with noise (sparse-LPN)
assumption, originally introduced by Alekhnovich [Ale03], which is equivalent to the
problem of decoding random low-density parity-check (LDPC) codes. We present a
range of structured-seed local PRG constructions derived from different variants of this
assumption, obtaining:

1. A direct structured-seed local PRG construction from the sparse-LPN assumption
with a regular noise distribution (where noise is generated by concatenating random
one-hot vectors).

2. A structured-seed local PRG construction with inverse-polynomial security based on
the sparse-LPN assumption with more general noise distributions. This approach
leverages advanced hashing schemes for balanced allocation and is more technically
involved.

As a result, we demonstrate that, for the four applications listed above, assumptions
about local PRGs can be replaced with assumptions regarding the hardness of sparse-
LPN with regular noise (for indistinguishability obfuscation, this requires assuming the
subexponential hardness of sparse-LPN). For the DNF learning application, where inverse-
polynomial security suffices, we further derive hardness results from the sparse-LPN
assumption without requiring regular noise.

4.3. Structured-Seed Local PRGs
We formally define structured-seed local PRGs and discuss the primitives that we use to
build them. A structured-seed pseudorandom generator relaxes “traditional” pseudoran-
dom generators to allow for more general distributions of seeds. Instead of sampling r
uniformly over {0, 1}n, we sample it as r $← SampleSeed. The properties that we require
are:

32

4.3. Structured-Seed Local PRGs

• Small size. The support Supp(SampleSeed) of SampleSeed is contained in {0, 1}n,
and

• Efficiency. The running time of the sampler SampleSeed is much smaller than m.

We provide a formal definition (which is Definition 9.4 in [BCM24]) below.

Definition 4.1 (Structured-Seed Local Pseudorandom Generator). A structured-seed
pseudorandom generator with a stretch m(·) is a triple of uniform PPT algorithms
(Setup,SampleSeed,PRG), with:

• Setup(1λ). A probabilistic algorithm that on inputs 1λ and outputs a public param-
eter pp.

• SampleSeed(pp). A probabilistic algorithm that on inputs pp and outputs a seed
value seed ∈ {0, 1}n.

• PRG(pp, seed). A deterministic algorithm that on inputs seed, public parameter pp
and outputs an evaluation value y ∈ {0, 1}m(n).

A structured-seed pseudorandom generator is (T, ε, δ)-secure if for any non-uniform p.p.t
adversary A = (Aλ)λ∈N of size at most T = T (λ), for all λ ∈ N,

Pr
[
AdvAλ

(D0,D1) > ε
]
≤ δ,

where D0 = Dλ,n
0 denotes the family of distributions

{(pp,PRG(pp, r)) | pp $← Setup(1λ), r $← SampleSeed(pp)}

and D1 = Dλ,n
1 denotes the family of distributions

{(pp, z) | pp $← Setup(1λ), z $← {0, 1}m(n)}.

Related Work There is one recent parallel work in which Ragavan, Vafa, and Vaikun-
tanathan [RVV24] also introduced the concept of structured-seed local PRGs. Our work
is concurrent and developed independently from theirs, with considerable overlap in
some findings: both works make the central observation that structured-seed local PRGs
can substitute local PRGs in certain applications, and both define structured-seed local
PRGs in a similar way. Some of the differences can be summarized as follows: (1) In
[RVV24] the main goal is to apply structured-seed local PRGs to indistinguishability
obfuscation (iO). Although we also discuss iO, their analysis is more comprehensive and
achieves stronger results, specifically by replacing local PRGs with structured-seed local
PRGs in [JLS22] rather than in [JLS21], meaning that they can bypass the need for the
LWE assumption. (2) The other applications that we study, such as secure computation
and hardness of learning, are not covered in [RVV24]. While our current exploration of
these applications is preliminary, we do a much more thorough analysis of the hardness-
of-learning application in future revisions, as it presents unique technical challenges. (3)

33

4. Stronger MPC - Weaker Primitives

Finally, in [RVV24] the primary structured-seed local PRG construction uses sparse-LPN
with Bernoulli noise. In contrast, we consider different noise distributions, such as regular
noise and XOR noise. Consequently, while some of our constructions share underlying
principles, they differ significantly in implementation and technical approach.

LPN Assumptions Informally, the Learning Parity with Noise (LPN) assumption over
the binary field F2 states, that no efficient adversary can distinguish between the pairs
(A,A · x + e) and (A,b), where A is sampled from a certain matrix distribution M over
Fn×k

2 . Here, x is drawn uniformly from Fk
2, and e represents a noise vector sampled

from a noise distribution E that typically generates sparse vectors over F2. In contrast,
b is chosen as a uniform vector over Fn

2 . Formally, the LPN assumption over F2 with
parameters k, n, and matrix and noise distributions M and E can be stated as follows:

Definition 4.2 (Learning Parity with Noise (LPN)). Let k ∈ N be an integer, and let
n = n(k) be a polynomial function of k. Let M =Mn,k be a distribution over matrices
in Fn×k

2 , and let E = En be a noise distribution over Fn
2 . We say that the (M, E)-LPN

problem is (T, ε, δ)-hard if, for any probabilistic adversary A = (Aλ)λ∈N of size at most
T = T (λ), it holds that for sufficiently large k:

Pr
A

$←Mn,k

[
AdvAk

(DA
0 ,DA

1) > ε
]
≤ δ,

where DA
0 denotes the distribution {(A,A · x + e) | x $← Fk

2, e
$← E} and DA

1 denotes
{(A,b) | b $← Fn

2}.

Discussion on the Definition Definition 4.2 (which is Definition 9.1 in [BCM24]) is
not the same as the traditional LPN definition. Typically, LPN is defined such that an
adversary’s advantage in distinguishing the distributions {(A,b) | A $←Mn,k,b

$← DA
0 }

and {(A,b) | A $←Mn,k,b
$← DA

1 } is bounded by ε, where ε is negligible in the security
parameter λ, and the probability of success is taken over both the adversary’s random
choices and the random selection of A. However, in Definition 4.2, we tweak the definition
as follows: δ represents the probability that a matrix A is “good” for the LPN problem,
while ε captures the probability that an adversary, given such a matrix A, can successfully
distinguish LPN samples from random samples. By setting both (ε, δ) to be negligible, we
immediately get the standard LPN definition but using this tweaked definition becomes
very useful in analyzing the sparse-LPN assumption, which is discussed further in
Section 9.4.

Types of Noise In the LPN context, the properties of the noise distribution play a
significant role in determining the hardness of the problem. Here, w is a parameter that
represents the expected density of nonzero entries in a typical noise vector e. Several
standard choices of noise distribution include:

• Bernoulli noise: Each entry of e is chosen independently according to a Bernoulli
distribution with parameter w/n.

34

4.4. Applications

• Exact noise: The noise vector e is uniformly sampled from the set of vectors with
a fixed Hamming weight w.

• Regular noise: The vector e is constructed by concatenating w randomly selected
one-hot vectors.

• XOR noise: Here, e is formed as the XOR of w randomly selected one-hot vectors
of length n. This distribution is particularly useful for security analyses since the
one-hot vectors are mutually independent.

We formally denote these distributions as follows:

• Bn,w: the distribution over Fn
2 in which each bit is independently set to 1 with

probability w/n.

• Sn,w: the uniform distribution over vectors in Fn
2 with exactly w non-zero bits.

• Rn,w: generated by concatenating w one-hot vectors sampled over Fn/w
2 (assuming

w divides n).

• Xn,w: generated by taking the XOR of w one-hot vectors of length n.

In the “low-noise” regime, where w ≪
√
n, the LPN variants with noise sampled from

Sw and Xw are nearly equivalent. This is because a sample from Xw has a Hamming
weight of exactly w with high probability. Moreover, it is known that LPN with Sw noise
is equivalent to LPN with Bw noise [Pie12]. While there are also reductions between
LPN with regular noise and other noise types, these typically come at a higher parameter
cost [LWYY24].

4.4. Applications
In this section we look into works that utilize a PRG in order to achieve their results
and we study the feasibility of replacing their PRG with our structured-seed local PRG
construction. These applications we study are:

• Indistinguishability obfuscation (iO) [JLS21]

• Constant-overhead secure computation [IKOS08]

• Sublinear secure computation [BCM23]

• Hardness of learning [DV21]

The reason why our structured-seed local PRG can replace their PRG is that in the
aforementioned works, the fact that the seed is sampled uniformly at random is not
actually used. They only require a short seed that can be sampled efficiently.

In other works, for example ones that employ some GGM style composition where the
output of the PRG is being used as input for the next invocation of the PRG, our work
can’t be applied since the PRG output doesn’t have the structure that we need anymore.

35

4. Stronger MPC - Weaker Primitives

4.4.1. Indistinguishability obfuscation

Indistinguishability obfuscation (iO) aims to obscure program code such that no poly-
nomial-time adversary can distinguish which of two functionally identical programs has
been obfuscated. This concept was formalized as a cryptographic building block in the
early 2000s by Hada [Had00] and Barak et al. [BGIRSVY01], with both positive [Can97;
LPS04; Wee05; HRsV07; HMS07] and negative [BGIRSVY01; GK05; Wee05] results
emerging in the early literature. Recently, a series of breakthrough results, culminating
in [JLS21] by Jain, Lin, and Sahai, demonstrated the construction of iO based on the
subexponential hardness of four assumptions:

• The LWE assumption,

• Learning parity with noise over a general prime field Fp,

• A boolean local PRG in NC0,

• The Decision Linear assumption on symmetric bilinear groups of prime order.

This iO framework relies on a series of transformations, beginning with weaker forms of
functional encryption and progressively advancing to full indistinguishability obfuscation.
Notably, the local PRG in their construction is leveraged to build a structured-seed PRG.
While the structured-seed PRG in [JLS21] is different from the structured-seed local
PRG notion introduced in our work, their construction can proceed equivalently if the
boolean local PRG is substituted with a structured-seed local PRG.

But it’s not just plug-and-play. The local PRG in [JLS21] requires subexponential
security. Our structured-seed PRG based on regular sparse-LPN can be conjectured to
meet this need against subexponential-time adversaries if we keep ε inverse-subexponential,
as suggested by an assumption we make on a concrete parametrized version of sparse-
LPN. Our assumption, states that no attacks on sparse-LPN do better than linear tests.
However, the value of δ remains non-negligible due to the inherent chance of sampling a
matrix with low dual distance. By using the matrix distribution proposed in [AK19], we
can make δ negligible but only slightly, which doesn’t fully work because the construction
needs δ to be subexponentially small.

“Traditional” local PRGs have similar issues, since they require an explicit hypergraph
with strong expansion properties, while randomly generated hypergraphs meet the
necessary condition only with probability 1 − 1/poly. Two potential solutions exist:
the first was the solution that was essentially used in [JLS21], where a specific sparse
matrix A is selected, assuming the subexponential hardness of sparse-LPN with respect
to this matrix. Then, by the assumption we mentioned above, most matrix choices
should yield feasible candidates, providing a non-uniform iO construction (which could
become uniform if an efficiently sampleable distribution over sparse matrices with a
subexponentially small dual distance probability is found).

The second approach involves sampling multiple parameter sets pp for the structured-
seed local PRG, such that at least one parameter set will likely offer security against
subexponential adversaries, except with subexponentially small probability. As shown

36

4.4. Applications

in [JLS22], this strategy produces a collection of functional encryption schemes from which
at least one will likely have subexponential security. These schemes can be combined
to create a robust functional encryption scheme using FE combiners. We obtain the
following result:

Theorem 4.1 (informal). Assume sub-exponential security of the following assumptions:

• The LWE assumption,

• Learning parity with noise over a general prime field Fp,

• The sparse-LPN assumption with regular noise,

• The Decision Linear assumption on symmetric bilinear groups of prime order.

Then, there exists (subexponentially secure) indistinguishability obfuscation for all poly-
nomial-size circuits. Assuming only polynomial security of the above assumptions, there
exists collusion-resistant public-key functional encryption for all polynomial-size circuits.

Note that in [JLS22] the LWE assumption is removed by utilizing the local PRG in a
more involved way. Direct replacement of this local PRG with a structured-seed local
PRG is nontrivial, as it involves an affine randomized encoding that reuses the PRG’s
output as a seed, which does not align with structured-seed PRGs. While we initially
considered exploring this more, recent independent work by [RVV24] has fully addressed
this challenge, so we decided to not pursue this direction any further.

4.4.2. Constant-overhead secure computation

Ishai, Kushilevitz, Ostrovsky, and Sahai [IKOS08] demonstrated that under the assump-
tion of polynomial-stretch local pseudorandom generators (along with oblivious transfers),
any two-party functionality can be securely computed with constant computational over-
head over the clear evaluation cost. In our work, we show that the local PRG in [IKOS08]
can be replaced with a structured-seed local PRG, as summarized in Theorem 4.2.

Theorem 4.2. Assuming the existence of a polynomial-stretch structured-seed local PRG
in NC0, denoted as G : {0, 1}n → {0, 1}m, and of a standard OT protocol, for a circuit
family C = {Cn} with polynomial size s(n) defining a two-party computation functionality
f , there exists a two-party protocol πf that realizes f in the semi-honest setting, with
each party in πf implemented by a circuit of size O(s(n)).

Thus, secure two-party computation with constant overhead can be based on OT and
the hardness of regular sparse-LPN expanding the assumptions supporting efficient secure
computation.

Although this is an informal overview, we will mention a little bit of the proof
of Theorem 4.2, because it makes it clear why our structured-seed local PRG can be
used. The protocol in [IKOS08] involves (very roughly) these steps:

37

4. Stronger MPC - Weaker Primitives

1. Constant-overhead secure computation reduces to constructing O(s) OTs with
constant overhead. In particular, for p = O(s) they show how to construct p
bit-OTs using a local PRG and √p OT instances.

2. Let g be a parameterized parameterized by a local PRG G. With black-box access
to g, a secure protocol to generate O(s) bit-OTs follows. This involves using
G(seed) in place of random masks to hide selection bits, achieved in linear time
with derandomization.

3. A key component is reducing g’s implementation to √p OTs on strings of total
length O(p) via decomposable randomized encodings.

The substitution of G with a structured-seed local PRG is straightforward in steps 1
and 3, as g’s hardcoded stretching algorithm is NC0 and independent of seed’s sampling.
But in step 2 the receiver must sample seed $← SampleSeed(pp) instead of a random seed,
which is computationally trivial.

There are a couple of things to consider here. The protocol in [IKOS08] assumes
a quadratic-stretch local PRG, which any polynomial-stretch PRG could achieve by
composing with itself. Unfortunately, structured-seed local PRGs achieve only near
quadratic stretch and do not self-compose, but we can tweak [IKOS08] to accommodate
smaller polynomial stretch. Secondly, O(p1/2+ε) string-OTs with constant overhead are
realized by sampling ℓ-bit seeds for the local PRG and using string-OTs to send one seed
to the receiver, who will then unmask a pair. This cost is polynomially small for large p,
and we conclude that polynomial stretch structured-seed PRG suffice for the reduction.

4.4.3. Sublinear Secure Computation and Compact HSS

The notion of Homomorphic Secret Sharing (HSS), introduced in [BGI16a], offers a
compelling alternative to fully homomorphic encryption by enabling secure computation
with sublinear communication overhead. The main idea behind an N -party HSS scheme
for a class of functions F is the splitting of x into multiple shares x1, x2, . . . , xN , distributed
among the parties. Each party can independently compute a share of the output yi,
such that the outputs (y1, . . . , yN) form additive shares of y = f(x), for a function
f ∈ F . A compact HSS scheme achieves this with shares and a sharing algorithm of
size O(|x|) + poly(λ), where λ is the security parameter. When paired with a generic
MPC protocol that has linear communication overhead, compact HSS enables secure
N -party protocols with optimal communication complexity O(N · (|x|+|y|)) + poly(λ) for
all f ∈ F .

A popular strategy for constructing compact HSS schemes is the “hybrid encapsulation”
approach. Instead of directly sharing the input x, parties share a shorter seed seed using
HSS and for a pseudorandom generator (PRG) G, the value u = x ⊕G(seed) is made
public. If G runs in linear time, the size of the shares and the runtime of the sharing
process are bounded by O(|x|) + poly(λ). To compute shares of f(x), the parties evaluate
gu(seed) := f(u ⊕ G(seed)) = f(x) homomorphically. This approach works as long as

38

4.4. Applications

gu ∈ F , meaning that the PRG G must also be efficient and belong to a low complexity
class when the HSS scheme supports a minimal function class F .

Recent work by [BCM23] has shown that sublinear secure computation and compact
HSS can be constructed under new assumptions. By new we mean new to the specific
application and not new to cryptography in general. They show:
Theorem 4.3 (Theorem 32 in [BCM23]). Assuming the superpolynomial hardness of the
DCR problem and the existence of PRGs with constant locality, there exists a four-party
HSS scheme for loglog-depth circuits with n inputs, where the share size is n · (1 + o(1)).
Moreover, there is a protocol with communication complexity n · (4 + o(1)) (for sufficiently
large n) to securely realize the four-party functionality generating HSS shares of the
concatenated party inputs.

In a seamless way, Theorem 4.3 can be adapted to using a structured-seed constant-
locality PRG with any small polynomial stretch. Specifically, each participant indepen-
dently generates a short seed seedi, and a secure computation protocol processes their
combined input (seed1||seed2||seed3||seed4). The difference is that parties need to run
SampleSeed instead of uniformly sampling a seed. Importantly, this adjustment preserves
the protocol’s correctness, security properties, and communication efficiency which means
that we can have a four-party HSS scheme for loglog-depth circuits with n inputs, where
the small share size. Furthermore, a protocol with communication complexity n ·(4+o(1))
(for sufficiently large n) can securely realize the four-party functionality generating HSS
shares of the concatenated inputs.

Combining this with the compiler from [BCM23] for N -party compact HSS to (N + 1)-
party secure computation with sublinear communication we get a five-party protocol with
sublinear communication complexity O(s/log log s) for layered circuits of size s under
the assumptions above.

4.4.4. Hardness of Learning
Probably Approximately Correct (PAC) learning [Val84] is the process of identifying a
hypothesis that can accurately predict the output of an unknown function class with high
probability. In this model, a learner aims to approximate an unknown target function
f from a class of functions H, given access to labeled examples (x, f(x)), where x is
drawn from an unknown distribution D. A hypothesis h ∈ H is said to be a PAC
solution if, for any distribution D over the input space and any ε > 0 and δ > 0, the
learner outputs h such that the probability of h having an error greater than ε (i.e.,
Prx∼D[h(x) ̸= f(x)] > ε) is at most δ. Formally,
Definition 4.3 (PAC Learning). A class of functions H is PAC-learnable if there exists
an algorithm A such that, for every distribution D, ε > 0, and δ > 0, A outputs a
hypothesis h satisfying:

Pr[Pr
x∼D

[h(x) ̸= f(x)] ≤ ε] ≥ 1− δ,

given a number of labeled examples that is polynomial in 1/ϵ, 1/δ, and the complexity
of H.

39

4. Stronger MPC - Weaker Primitives

Hardness of learning establishes the difficulty for learning algorithms to generate such
hypotheses. In [DV21], Daniely and Vardi provide several hardness-of-learning results
based on the existence of local PRGs with polynomial stretch and constant distinguishing
advantage. We show how our structured-seed local PRG can substitute the PRG in their
results, leading to hardness-of-learning conclusions from the sparse-LPN assumption.
Definition 4.4 (Predicate). Given a structured-seed ℓ-local PRG (Setup,SampleSeed,
PRG) with input size k and stretch n, we let P denote the predicate such that for each
i ∈ [n], there is a subset Si ⊂ [k] of size |Si|≤ ℓ such that for all x ∈ Supp(SampleSeed(pp)),
defining y = PRG(x), we have yi = P (x[Si]).

Generally, for ℓ-local PRG we have that each output bit yi depends on a predicate Pi

and a subset Si of size ℓ of the bits of the seed x, where yi = Pi(x[Si]). However, when
the PRG has polynomial stretch then we can just assume a single predicate P . Because
there are at most 22ℓ possible predicates Pi for ℓ-bit inputs, and ℓ is constant, choosing P
as the most frequent Pi and retaining only bits generated with P yields an ℓ-local PRG
with polynomial stretch, reduced by at most 22ℓ . Additionally, this is works perfect for
our construction because it uses a single global predicate.

DNFs We prove that DNF formulas with ω(1) terms cannot be efficiently PAC-learned,
assuming the sparse-LPN assumption. Informally this says that for any q(n) = ω(1),
there is no efficient algorithm that PAC-learns DNF formulas with n variables and q(n)
terms.

We note that unlike other applications discussed here, we only require a structured-seed
local PRG with constant (ε, δ). Therefore, we can directly rely on sparse-LPN instead of
regular sparse-LPN. However, the result critically requires a local PRG with arbitrary
polynomial stretch, achievable under sparse-LPN using the construction in Section 9.5.11.

The proof of Theorem 3.1 in [DV21] hinges on a clever insight: let ℓ be constant, and
let P : {0, 1}ℓ → {0, 1} be an ℓ-local predicate. For any subset S = {s1, . . . , sℓ} ⊂ [n],
set vi := unitn(si) ∈ {0, 1}n for i = 1 to ℓ. Then, define the formula ψ as follows:

ψ(v1, · · · ,vℓ) =
∨

x:P (x)=1

∧
i≤ℓ

∧
j:seedj ̸=xi

v̄i,j .

We have

ψ(v1, · · · ,vℓ) = 1 ⇐⇒ ∃x ∈ P−1(1),∀i ≤ ℓ,∀seedj ̸= xi, v̄i,j = 1
⇐⇒ ∃x ∈ P−1(1),∀i ≤ ℓ,∀seedj ̸= xi, unitn(si)j = 0
⇐⇒ ∃x ∈ P−1(1),∀i ≤ ℓ,∀seedj ̸= xi, si ̸= j

⇐⇒ ∃x ∈ P−1(1),∀i ≤ ℓ, seedsi = xi

⇐⇒ ∃x ∈ P−1(1), seedS = x
⇐⇒ P (seedS) = 1.

This shows that, given a predicate P and a seed x, (P,x) can be hardcoded into a
DNF ϕ such that for any size-ℓ subset S, there is an encoding Encode(S) = (v1, · · · ,vℓ)
with ψ(Encode(S)) = P (x[S]).

40

4.4. Applications

To adapt the proof of Theorem 3.1 from [DV21] to structured-seed local PRGs, we
make the following assumption:

For every constant s > 1, there exists a constant ℓ such that a (T, 1/6, 1/6)-secure
structured-seed ℓ-local PRG (Setup, SampleSeed,PRG) with predicate P exists, mapping
k bits to ks bits, for any T = poly(λ).

By Theorem 9.5.11 (which roughly says that the stretch of our construction can be
extended to an arbitrary polynomial via self-composition), the assumption above is
implied by the sparse-LPN assumption. Let A be a PPT adversary that PAC-learns DNF
formulas with k variables and q = ω(1) terms. Define Q as the number of DNF oracle
queries by A, and set s such that ks > 100Q2. Define the distribution D as follows:

• Sample pp← Setup(1λ).

• For any i ≤ ks, let Si denote the size-ℓ subset of bits from seed used by PRGpp(seed)
(noting that Si is independent of seed, though it may depend on pp).

• Define D = Dpp as the distribution sampling i $← [ks] and outputs z = Encode(Si).

Sample seed← SampleSeed(pp), and let ψ encode the computation of PRGpp(seed)i =
P (seedSi) = ψ(Encode(Si)). ψ is a DNF formula with at most 2ℓ terms. Given Q
samples (zi, ψ(zi))i≤Q (the training set), adversary A outputs a hypothesis h, with low
error on the training set with small probability. With probability at most 1/100, no
query collisions occur, meaning that distinguishing the next sample (zQ+1, ψ(zQ+1)) from
random happens with high probability.

41

5. This Thesis

5.1. Papers and Contributions

Parts II, III and IV are based on research papers written jointly with my co-authors
[BMRS24; MRY23; BCM24; CKMSS24]. The content for [BMRS24; MRY23; BCM24]
is taken from the full versions of the papers that are published on ePrint. The text for
[CKMSS24] is not public yet. It is under submission at PKC ’25. Unless explicitly men-
tioned, there have been no modifications to the texts other than correcting typographical
errors, adjusting layout (mostly tables and boxes) to work in this LATEX book format,
adjusting sections and subsections for better readability, and moving content from the
appendices to the appropriate sections in the main body.

Chapter 6: MPC with Identifiable Abort
This chapter is based on the ePrint version [BMRS23] of the paper:

[BMRS24] Carsten Baum, Nikolas Melissaris, Rahul Rachuri, and Peter
Scholl. Cheater Identification on a Budget: MPC with Identifiable Abort from
Pairwise MACs. In: Advances in Cryptology – CRYPTO 2024, Part VIII.
ed. by Leonid Reyzin and Douglas Stebila. Vol. 14927. Lecture Notes in
Computer Science. Santa Barbara, CA, USA: Springer, Cham, Switzerland,
Aug. 2024, pp. 454–488. doi: 10.1007/978-3-031-68397-8_14

The idea for this paper was due to Carsten Baum and Peter Scholl who have an established
line of work on this subject. I wrote parts of Sections 6.1, 6.4, and 6.5.

Chapter 7: MPC with Friends and Foes This chapter is based on the ePrint version
[MRY22] of the paper:

[MRY23] Nikolas Melissaris, Divya Ravi, and Sophia Yakoubov. Threshold-
Optimal MPC with Friends and Foes. In: Progress in Cryptology - IN-
DOCRYPT 2023: 24th International Conference in Cryptology in India,
Part II. ed. by Anupam Chattopadhyay, Shivam Bhasin, Stjepan Picek, and
Chester Rebeiro. Vol. 14460. Lecture Notes in Computer Science. Goa, India:
Springer, Cham, Switzerland, Dec. 2023, pp. 3–24. doi: 10.1007/978-3-
031-56235-8_1

The idea for this paper is due to Divya Ravi and Sophia Yakoubov. I wrote parts of
Sections 7.2, 7.3, and 7.6.

43

https://doi.org/10.1007/978-3-031-68397-8_14
https://doi.org/10.1007/978-3-031-56235-8_1
https://doi.org/10.1007/978-3-031-56235-8_1

5. This Thesis

Chapter 8: Compressing Pseudorandom Permutation Correlations
This chapter is based on a paper that is under submission at PKC ’25:

[CKMSS24] Geoffroy Couteau, Alexander Koch, Nikolas Melissaris, Sacha
Servan-Schreiber, and Peter Scholl. Compressing Pseudorandom Permutation
Correlations. In Submission. 2024

The idea for this work is due to Geoffroy Couteau and Sacha Servan-Schreiber. I wrote
parts of Sections 8.1, 8.2, 8.3, and 8.4.

Chapter 9: Structured-Seed Local Pseudorandom Generators and their Applications

This chapter is based on [BCM24] which is uploaded on ePrint:

[BCM24] Dung Bui, Geoffroy Couteau, and Nikolas Melissaris. Structured-
Seed Local Pseudorandom Generators and their Applications. Cryptology
ePrint Archive, Report 2024/1027. 2024. url: https://eprint.iacr.org/
2024/1027

The idea for this work is due to Geoffroy Couteau.
I wrote parts of Section 9.7.

44

https://eprint.iacr.org/2024/1027
https://eprint.iacr.org/2024/1027

Part II.

Better Security Guarantees for MPC

45

6. MPC with Identifiable Abort

6.1. Introduction
Secure multiparty computation (MPC) is a class of cryptographic protocols allowing
a group of distrusting parties to jointly compute a function over their private inputs,
without revealing anything beyond the output of the computation. While many different
factors impact the usability of MPC protocols, one of the most important security-wise
is the corruption threshold. It provides a limit on how many of the participants can
collude and share their information, without losing the privacy guarantees of MPC. Many
popular protocols, such as SPDZ [DPSZ12], BDOZ [BDOZ11] and their follow-up works
ensure privacy, even if n − 1 out of the n participants are corrupted, and even when
attackers may actively deviate from the protocol.

Nevertheless, privacy is not the only security guarantee that an MPC protocol may
have to achieve. Fairness requires that if the corrupted parties obtain the output, then
so do the honest parties. It is known [Cle86] that in the dishonest majority setting (i.e.
when ≥ n/2 parties are corrupted) we cannot achieve fairness, or the even stronger notion
of guaranteed output delivery. Therefore, current highly efficient protocols settle for a
weaker notion of security: security with abort. This typically means that a corrupt party
can force the protocol to abort, so that some (or all) of the honest parties will abort
instead of learning the correct output.1

Identifiable Abort for MPC.

Since fairness is impossible in the dishonest majority setting, the next best property would
be if, in the case that the protocol aborts, the honest parties agree that the protocol
aborted and also agree on the identity of at least one corrupt party. This can work
as a deterrent since honest parties can exclude said corrupt party if they restart the
computation. This property is called identifiable abort.

Cheater identification in dishonest-majority MPC (ID-MPC) was first formally studied
by Ishai, Ostrovsky and Seyalioglu [IOS12], who showed that it is impossible to build
unconditionally secure ID-MPC in a model with a broadcast channel and any pairwise
ideal functionality, such as oblivious transfer (OT). This is in contrast to the secure-
with-abort model, where pairwise OT suffices. Later, Ishai, Ostrovsky and Zikas [IOZ14]
constructed a compiler that takes any semi-honest protocol that uses a source of correlated
randomness, and transforms it into a protocol with security against malicious parties
and with identifiable abort (in the correlated randomness model). The compiler can

1This is called selective abort, in contrast to unanimous abort, where the honest parties must all agree
that the protocol aborted.

47

6. MPC with Identifiable Abort

be seen as an information-theoretic version of the GMW compiler [GMW87a]: each
party commits to its input and randomness that they intend to use for the semi-honest
protocol and then runs the semi-honest protocol by broadcasting their messages in each
round and using zero-knowledge to prove that their messages are correct. To generate
the correlated randomness needed for this protocol, [IOZ14] also described a compiler
that transforms any cryptographic preprocessing phase that is secure-with-abort into one
that has identifiable abort.2 Overall, this yields the first construction with identifiable
abort that makes only black-box use of cryptographic primitives, namely an adaptively
secure oblivious transfer protocol and a broadcast channel. The main downsides of this
construction are the need for adaptively secure OT in the preprocessing phase, and the
overall complexity of proving that each protocol step was executed correctly in the online
phase.

To resolve this, multiple works [BOS16; SF16; CFY17; BOSS20] have given more
“practical” constructions of ID-MPC. Baum et al [BOS16] construct an identifiable
abort protocol for arithmetic circuits in the preprocessing model where the online phase
is a variant of BDOZ [BDOZ11] that permits cheater identification. While avoiding
adaptively secure OTs, their preprocessing phase needs to perform at least n times as
much computation as non-identifiable protocols, and also relies on cheater identification
for lattice-based cryptography which is far from being practically efficient. [SF16] modify
the SPDZ protocol to identify cheating by ensuring that correct shares are opened. Their
preprocessing would, in order to be identifiable, have to rely on the same expensive
mechanisms as [BOS16] (such as verifiable decryption). Cunningham et al. [CFY17] used
Pedersen commitments to identify cheaters in the online phase, which limits the finite
field over which the computation can happen and makes preprocessing costly as all these
commitments have to be generated during preprocessing. Finally, Baum et al.[BOSS20]
construct an ID-MPC protocol for boolean circuits which runs in a constant number
of rounds and uses cryptographic primitives in a black box away. While in their work,
public key operations after the setup phase and zero knowledge (ZK) machinery (as well
as adaptive OTs) are avoided, their construction is limited to the binary setting and their
use of multiparty BMR [BMR90] has a substantial overhead from reconstructing a large
garbled circuit.

Challenge of adaptive security and identifiable abort.

When considering solely a preprocessing protocol, the [IOZ14] compiler offers a simple and
attractive approach to obtaining identifiable abort. At a high level, their idea is to have
every party first commit to a random tape, and then run a standard, secure-with-abort
protocol; if the protocol aborts, every party will open the commitments to their random
tapes. This allows all other parties to detect which party cheated by re-running a local
copy of the protocol. Furthermore, intuitively, opening random tapes in case of abort
does not pose a privacy issue, since the preprocessing phase is independent of all parties’
inputs. What is needed for this to work is that any deviation from the honest protocol

2This result bypasses the impossibility of [IOS12] by relying on black-box use of an OT protocol rather
than an ideal OT functionality.

48

6.1. Introduction

can be consistently detected by every party using the randomness that they committed
to (called P-verifiability in [IOZ14]).

The challenge with this approach lies in simulating the view of the corrupted parties.
If the protocol aborts, the simulator needs to be able to open the honest parties’ random
tapes to the adversary, in a way that is consistent with the previous (simulated) transcript.
One way to do this is if the preprocessing protocol is adaptively secure, so that honest
random tapes can be ‘explained’ by the simulator as if that party had just been adaptively
corrupted. This is where the reliance of [IOZ14] on adaptive OT comes from, and it
seems inherent to this commit-and-open paradigm3. While some works have attempted
to circumvent the adaptivity problem [BDD20; BOSS20], no efficient UC-secure solution
for ID-MPC over arbitrary finite fields is known.

6.1.1. Our Contribution
In this work, we construct an efficient MPC protocol with identifiable abort for arithmetic
circuits over large fields, with UC security [Can01]. A key feature of our protocol is
an online phase based on simple, pairwise information-theoretic MACs, just as in the
(secure-with-abort) BDOZ protocol [BDOZ11]. Thanks to this simple online phase, the
correlated randomness that must be produced by the preprocessing phase is just standard,
authenticated multiplication triples, the same as in secure-with-abort protocols. To allow
identifiable abort in the online phase, our main tool is a new compiler that transforms
certain classes of sender-receiver protocols, where one party has private input, into ones
that support cheater identification. Our compiler overcomes some limitations of the
related compiler from [IOZ14], which only works for preprocessing protocols, and also
requires adaptive security of the original protocol.

6.1.2. Technical Overview
Online Phase.

A natural approach to achieving identifiable abort in MPC is to use a form of linear
secret sharing where the parties are committed to their shares via linearly homomorphic
commitments. If the commitments support multiple receivers and identifiable abort, then
secret-shared values can be reliably opened, by checking commitments on the shares.
Given a preprocessing phase that generates random multiplication triples, where each
share is authenticated to all other parties using the homomorphic commitments, one
can construct a standard MPC protocol by exploiting linearity of the commitments
and using Beaver multiplication. This was done, for instance, in [BOS16], using an

3[BOSS20] manages to avoid the use of adaptively secure primitives by making use of a homomorphic
commitment scheme and redefinitions of the offline ideal functionality. Specifically, in case of an
abort of the offline phase their ideal functionality at this point did not yet output any values to
the environment, so the original random tapes can safely be opened. Moreover, their preprocessing
protocol uses homomorphic commitments for shares and require that all parties commit to the
values they used in the preprocessing. The consistency is then ensured by opening random linear
combinations of the commitments, and in the online phase these commitments can be used for cheater
detection.

49

6. MPC with Identifiable Abort

information-theoretic identifiable commitment scheme; however, the structure of the
commitments is more complex than information-theoretic MACs used in secure-with-
abort MPC [BDOZ11; DPSZ12], which led to a much more costly preprocessing protocol
in [BOS16].

In this work, our online phase follows the same general approach, using preprocessed
triples and identifiable linear commitments. The key differences compared with prior work
are how we instantiate the preprocessing to generate multiplication triples with identifiable
abort, and how we instantiate the identifiable, linearly homomorphic commitments.

Preprocessing Phase.

The goal of our preprocessing phase is to create additive secret shares of random multi-
plication triples over a large field, which are committed to using linearly homomorphic
commitments. To do this, the parties will first run a secure-with-abort protocol, ΠTrip,
to create unauthenticated triples (for instance, using pairwise OLE), and then commit
to their shares with the homomorphic commitments. To guarantee that parties have
committed to the correct shares, we then run a sacrificing-based correctness check, where
one triple is sacrificed to check another, similarly to [DPSZ12].

To identify cheaters in this approach, we must make two important changes. First,
following the IOZ compiler [IOZ14] and other similar approaches [BOSS20; SSS22],
we have the parties commit to their random tapes of the secure-with-abort protocol
ΠTrip before running it. If ΠTrip aborts, the parties then open their random tapes and
reconstruct the protocol transcript to identify who cheated. This stage requires the
original protocol to have a form of verifiable transcripts, meaning that it is always
possible to identify who cheated, when given the (alleged) views of all parties together
with their random tapes. We formalize this property, which we call identifiable cheating,
and show that it can be cheaply added to any secure-with-abort protocol by adding
digital signatures to all pairwise communication. Signatures guarantee that if some party
cheats, there is a signed record of the messages it sent that can later be used to help
prove this.

It remains to discuss how we can still simulate the execution of ΠTrip, without running
into the aforementioned adaptive security issue. Following [BOSS20], we have the
simulator run an honest copy of ΠTrip, to generate the honest parties’ messages seen by
the adversary. Now, it is easy to simulate the opening of random tapes in case of abort,
the only problem is that the simulator no longer has any power to extract the corrupt
parties’ inputs. In this case, however, the only inputs that need to be extracted are
the corrupted parties’ shares of multiplication triples, which were already committed to
via the homomorphic commitment scheme. By relying on a UC secure homomorphic
commitment functionality, these shares can easily be extracted without having to use the
ΠTrip simulator4.

The last issue is that even if the triple protocol ΠTrip runs correctly, the overall protocol
may still abort if the triple sacrifice fails, due to a corrupted party committing to the

4We still rely on the existence of the ΠTrip simulator in the proof, to argue that the simulated view is
indistinguishable from the real protocol

50

6.1. Introduction

wrong share. To recover from this, we again have the parties open their random tapes
from ΠTrip, so that all parties’ shares can be recovered, and then compare these with the
shares that were committed to in the homomorphic commitment scheme by opening all
the committed shares.

Building Identifiable, Homomorphic Commitments.

To instantiate the homomorphic commitment scheme, we design a scheme based on
pairwise information-theoretic MACs, where the committed value is authenticated to
every other party with a MAC, as in BDOZ. An advantage of such MACs is that
they can be generated very efficiently using vector oblivious linear evaluation (VOLE)
protocols based on variants of the learning parity with noise assumption, such as [BCGI18;
WYKW21; BCGIKRS19]. However, the problem is that MACs do not provide a way
for parties to agree upon who cheated in the event that an opening fails. Indeed, the
impossibility result of [IOS12] implies that this is impossible to do with black-box use of
pairwise information-theoretic MACs.

At a high level, our approach is to follow the same commit-and-open approach as
for the triple generation: if an opening fails, the parties will open their random tapes
for the VOLE protocols used to generate the MACs, and use the reconstructed VOLE
outputs to help identify who cheated. However, we are now met with two new challenges.
Firstly, the commit-and-open paradigm only works for preprocessing protocols, since all
parties need to open their random tapes in case of an abort — when using homomorphic
commitments in the online phase, this would leak any private, committed inputs. Secondly,
we again have to deal with the adaptivity problem, which was essentially deferred in the
preprocessing stage, by relying on the security of the homomorphic commitment scheme.

Compiling Sender-Receiver Protocols to Identifiable Abort.

We present a new identifiable abort compiler that works for a general class of sender-
receiver protocols, where only one party (the sender) has private input. Like IOZ, our
compiler makes black-box use of the underlying secure-with-abort protocol. Unlike IOZ,
however, we are not restricted to preprocessing protocols where no party has private
input — this allows us to apply our compiler to an arbitrary, linearly homomorphic
commitment scheme with multiple receivers, which we instantiate with a VOLE-based
protocol for setting up information-theoretic MACs.

At a high level, our compiler follows the same strategy as our preprocessing phase,
except that to prevent leakage of the sender’s private inputs, we only require the receivers
to commit to and open their random tapes, and not the sender. Under a mild assumption
on the communication pattern in the sender-receiver protocol, we show that the receivers
will still be able to identify a cheating sender, since in this case there will always be at
least one honest receiver, who can prove that they followed the protocol and aborted due
to the cheating sender. There is one issue with this approach, however. Even though
receivers do not have private inputs, they may have private outputs that can’t be revealed.
To remedy this, we use two different types of recovery mechanisms, depending on whether

51

6. MPC with Identifiable Abort

a sender or receiver is claiming an abort. In the first case, the receivers will all privately
send their evidence to the sender, who will select and publish a proof. In the second
case, the aborting receiver must instead immediately open its view for all parties to
inspect and confirm that it aborted; because of the restricted communication pattern of
sender-receiver protocols, this would imply that the sender has cheated (and so it is not a
problem to leak the receiver’s output, which only depends on the corrupt sender’s input).

Avoiding Adaptive Security via Online Extractability.

The final challenge in our compiler is ensuring that all of the identification stages, where
honest receivers open their random tapes, can be simulated. Instead of relying on adaptive
security, we observe that a weaker property suffices, which we call online extractability.
In the UC security proof, there are two cases, depending on whether the adversary
corrupts the sender, or only (a subset of) the receivers. In the first case, the main job
of the simulator is to simulate messages from the honest receivers in such a way that it
can extract the inputs of the corrupted sender.5 If the simulator later has to open the
honest receivers’ random tapes, due to the malicious sender causing an abort, the natural
approach relying on adaptive security is for the simulator to adaptively corrupt the honest
receivers, so that it learns randomness that explains the previously simulated messages.
Online extractability instead defines a special type of simulation, where the normal
protocol execution suffices to extract adversarial inputs, if one does only imperceptible
changes to the CRS or other hybrid functionalities. While this is already how many UC
protocol simulators work, we define this property formally and show that it is composable.
Having online extractability, the task of the simulator in our IA compiler is now much
easier: it can simulate messages of the honest receivers by simply running an honest copy
of the protocol, except for the interaction with a setup functionality like a CRS. This
makes it trivial to open the random tape to identify a cheater, since the simulator has
followed the protocol honestly. 6

Efficiency Analysis

Efficiency compared with MPC with abort.

To investigate the overhead of obtaining identifiable abort, we compare our protocol
with the preprocessing and online phases from Le Mans [RS22], which is secure with
abort. There are two ways to run the preprocessing in Le Mans. The first way, called Le
Mans 1 in Table 6.1, is to generate what they call “partial triples”, and authenticate the
triples during the online phase. Asymptotically, the preprocessing cost in this approach
can have a total of O(n2 log|C|) communication, where |C| is the circuit size, when

5In this case, note that the simulator does not need to equivocate the corrupted receivers’ outputs to
match those of the ideal functionality, because of the structure of the sender-receiver protocol: these
outputs only depend on the corrupted sender’s input, so there is nothing to simulate.

6Of course, one still has to prove that a protocol is online-extractable, but this is seemingly simpler
than a security proof for adaptive security. Indeed, we observe that many protocols in the literature
are already online-extractable.

52

6.1. Introduction

using pseudorandom correlation generators for OLE and VOLE correlations. The local
computation of PCG approaches is still O(n2|C|), however. If instead, “non-silent”
OLE or VOLE protocols are used, such as from homomorphic encryption or OT, the
communication would also be O(n2|C|). The online cost is 12n elements per party (by
using the king approach). The second version of Le Mans generate the partial triples in
the preprocessing, but also authenticates and checks them, costing an additional O(n2|C|)
field elements, but bringing the online cost down from 12n to 4n elements per party.

Our preprocessing has the same base cost as Le Mans 1, plus an additional 2(n− 1)|C|
field elements per party, sent via point-to-point channels. When it comes to the online
phase, we use the standard BDOZ online phase with authenticated triples and signatures
added to the messages, which again, increases the cost by O(n). Overall, our online
communication cost per party is dominated by 2(n− 1)|C| field elements, in an honest
execution.

Note that an adversary can always increase the cost of our preprocessing by forcing
complaint procedures to be run (by sending invalid messages). This increases our round
complexity by a factor of 2, and forces the entire transcript to go via a secure broadcast
channel instead of point-to-point channels. The adversary could also cause an abort at
any point during the protocol, forcing parties to open their views. However, resolving an
abort in our protocol is fairly cheap in terms of computation: once the parties receive
the view(s), they only need to locally compute the messages that should have been sent,
with no need for expensive ZK proofs.

Efficiency compared to other ID-MPC protocols.

We now compare our construction to [BOS16] and [BOSS20].
In the preprocessing phase, [BOS16] requires O(n3) broadcast messages per multipli-

cation gate because the parties need to perform O(n2) verifiable decryptions of RLWE
ciphertexts. In our protocol, even in the worst case when all messages between parties
are forced to be broadcast, we only need O(n2) broadcasts per multiplication. This
asymptotic difference is due to the more complex information-theoretic signatures used
in [BOS16], which take more work to set-up than our simple pairwise MACs. In the
online phase, both [BOS16] and our protocol have O(n2) complexity.

Concretely, while it is hard to estimate costs without an implementation, we expect
that our protocol will perform much faster than [BOS16]. Our protocol is designed to use
Pseudo-random Correlation Generator (PCG) techniques for generating Oblivious Linear
Evaluation (OLE) and Vector OLE correlations, and prior works estimate [BCGIKS20b]
that concretely, these have orders of magnitude less communication than homomorphic
encryption-based (HE) approaches. In [BOS16], the complexity of its preprocessing
requirements makes it much harder to employ practical PCG techniques instead of HE,
and in particular, we do not see an easy way to avoid their asymptotic O(n3) overhead.

The protocol of [BOSS20] is incomparable to ours as it is a garbled circuit-based
construction that works for Boolean circuits (with a constant-round online phase). In
comparison, our construction allows the evaluation of circuits over Fp for large p with a
round complexity that depends on the circuit depth. Both their and our construction use

53

6. MPC with Identifiable Abort

Protocol Building blocks IA Preprocessing cost Online cost
Le Mans, v1 (V)OLE ✗ n2 ×OLE∗ 12n
Le Mans, v2 (V)OLE ✗ n2 ×OLE∗+O(n) 4n
[BOS16] depth-1 HE ✓ O(n3)† O(n2)‡
Ours (V)OLE ✓ n2 ×OLE∗+O(n2) ‡ O(n2)‡
∗ Random, pairwise OLE and VOLE correlations. Can be generated with amortized o(1)

communication using variants of LPN [BCGIKRS19; BCGIKS20b].
† Must be broadcast
‡ Corrupted party can force to be broadcast

Table 6.1.: Comparing efficient MPC protocols with and without identifiable abort. Preprocess-
ing cost reflects the cost per multiplication in the preprocessing phase, in terms of
building blocks (OLE/VOLE) plus total communication in field elements.

homomorphic commitments during the offline phase: [BOSS20] commits each party to its
GC keys, while we let each party commit to its shares. To achieve this, [BOSS20] uses a
non-interactive vector commitment while we use a VOLE-based construction. Adapting
our commitments to their setting might be interesting future work.

6.1.3. Related work

Interest in the area of MPC with Identifiable Abort has increased recently, leading to
many exciting research directions.

Brandt et al. [BMMM20] and independently Simkin et al. [SSY22] investigated how
to realize dishonest-majority MPC with identifiable abort from correlations among less
than all n parties.

Cohen et al. [CGZ20] investigated the two-round MPC setting with dishonest majority
and broadcast. They showed in which cases identifiable abort is achievable, depending
on the broadcast use. This was extended to the honest majority setting by Damgård
et al. [DMRSY21]. In follow-up work, [DRSY23] investigated which setup is necessary
for the two-round setting to achieve identifiable abort. In the plain model, Ciampi et
al.[CRSW22] showed how to construct ID-MPC in the optimal 4 rounds.

When considering covert instead of malicious security, Faust et al. [FHKS21] as well as
Scholl et al. [SSS22] constructed compilers from passively secure MPC to covertly [AL07]
secure MPC with security against n − 1 corruptions using time-lock puzzles. Later,
Attema et al. [ADEL22] showed how to realize this without time-lock puzzles, although
requiring an honest majority. All these constructions actually achieve a stronger property
called publicly verifiable MPC which implies identifiable abort.

Hazay et al. [HVW22] used framing-free designated-verifier Zero-Knowledge proofs to
construct an alternative to the IOZ14 compiler. Their construction only works for honest
majority protocols.

More concretely, Chen et al [Che+21] constructed a dedicated RSA key generation
protocol with Identifiable Abort and security against a dishonest majority. The effi-

54

6.2. Preliminaries and Notation

ciency of their construction comes from a communication model that uses a centralized
“coordinator” which realizes broadcast.

Concurrent Work.

Recently, Cohen et al. [CDKs23] presented another approach to identifiable abort, which
also manages to avoid the need for adaptively secure OT in the [IOZ14] compiler. Their
method is based on revealing committed input values in case of cheating; in contrast to
our approach of revealing random tapes to verify protocol messages, [CDKs23] do not
make use of the underlying protocol messages in this way, instead relying on a special
form of committed OT functionality.

We believe that our work has a couple of advantages over [CDKs23]:

1. We directly support MPC for computing arithmetic circuits on private inputs,
instead of just correlated randomness functionalities. While [CDKs23] could be
used to instantiate the correlated randomness for, say, the [IOZ14] online phase,
the amount of correlated randomness needed would be at least n times more than
what’s used by our protocol, due to the use of O(n) sized information-theoretic
signatures used in [IOZ14] to authenticate the correlated randomness.

2. Even for computing correlated randomness, our protocol seems to be more effi-
cient. [CDKs23] gives an instantiation of MASCOT-like preprocessing, with roughly
a 50% overhead on top of the secure-with-abort protocol. Our protocol can be
instantiated using VOLE based on SoftSpokenOT and triple generation using OT,
to obtain a similar result but with essentially no extra communication cost for
achieving identifiable abort.7

Roadmap.

In contrast to the “top-down” presentation in the technical overview in Section 6.1.2,
the remainder of the paper proceeds in a “bottom-up” fashion. We start with our
notion of online extractability in Section 6.3, followed by a construction of homomorphic
commitments in Section 6.4, which are compiled to support identifiable abort in Section 6.5.
Section 6.6 then describes our triple generation protocol, which uses the previous building
blocks. In the Supplementary Material, we describe the online phase, as well as various
additional technical details.

6.2. Preliminaries and Notation
We use κ as the security parameter and ρ as the statistical security parameter. Bold letters
such as a are used to indicate vectors, and a[i] refers to the i-th element of the vector.
We write [a, b] to denote the set of natural numbers {a, . . . , b} and [a, b) = {a, . . . , b− 1}.
We use a⊙ b to indicate the component-wise product of vectors.

7The main overhead incurred in our protocol is that, in the worst case, an adversary can force all all
point-to-point messages to be broadcast. This broadcast is done by default in [CDKs24]

55

6. MPC with Identifiable Abort

6.2.1. Modeling Security

We work in the universal composability (UC) framework [Can01] for analyzing security
and assume some familiarity with this. In UC, protocols are run by interactive Turing
Machines (iTMs) called parties. We make the simplifying assumption that any protocol
π runs between a fixed set of parties, typically denoted P = {P1, . . . , Pn}. The adversary
A, which is also an iTM, can actively corrupt a subset PA ⊂ P and gains control over
these parties. We denote the set of honest parties by PH = P \ PA. We focus on
static corruptions, so these sets are fixed from the beginning. The parties can exchange
messages via resources, called ideal functionalities (which themselves are iTMs) and
which are denoted by F . We assume that all parties can communicate via authenticated
channels, and sometimes also use secure point-to-point channels and a reliable broadcast
channel. These are all modelled as ideal functionalities that can be realized on top of
authenticated channels using standard methods. In protocol descriptions, instead of
referring to the specific functionalities, we typically write e.g. Pi privately sends x to
Pj or Pi broadcasts x. Moreover, we work in the synchronous model, where protocols
proceed in a sequence of rounds, such that every message sent in one round is guaranteed
to be delivered before the start of the next round. Such synchronous communication
channels can also be modelled in UC [KMTZ13].

As usual, we define security with respect to an iTM Z called the environment. The
environment provides inputs to and receives outputs from the parties in P. To define
security, let πF1,... ◦A be the distribution of the output of an arbitrary Z when interacting
with A in a real protocol instance π using resources F1, Furthermore, let S denote an
ideal world adversary and F ◦ S be the distribution of the output of Z when interacting
with parties which run with F instead of π and where S takes care of adversarial behavior.

Definition 6.1. We say that π UC-securely implements F if for every iTM A there
exists an iTM S (with black-box access to A) such that for every environment Z, the
outputs of Z ◦ πF1,... ◦ A and Z ◦ F ◦ S are identical except with negligible probability.

In the security experiment Z may arbitrarily activate parties or A, though only one
iTM (including Z) is active at each point of time.

Definition 6.2 (Identifiable Abort). Let F be a functionality running with a set of
parties P. We define [F]IA to be the corresponding functionality with identifiable abort,
where at any time, if A sends a message (Abort,J) for some non-empty set J ⊂ PA,
[F]IA sends (Abort,J) to all parties and terminates. Additionally, if F would at any
point send a message Abort to P, it first waits to receive a non-empty J ⊂ PA from A,
and then sends (Abort,J) instead.

6.2.2. VOLE and Information-Theoretic MACs

The VOLE8 functionality Fprog
VOLE (Figure 6.1) generates a batch of m random VOLE

correlations between two parties PA and PB, usually called sender and receiver.
8More precisely, this is actually a so-called subfield VOLE.

56

6.2. Preliminaries and Notation

Functionality Fprog
VOLE

Parameters: Finite field Fpr , and expansion function Expand : S → Fm
p with seed

space S and output length m.
The functionality runs between parties PA and PB.

Initialize: On receiving Init from PA and PB, sample ∆B ← Fpr for PB, and
ignore all subsequent Init commands. Store ∆B and send it to PB.

Extend: On receiving Extend from PB and (Extend, seed) from PA, where seed ∈ S:

1. Compute u = Expand(seed).

2. Sample v ← Fm
pr and compute w = u ·∆B + v.

3. Send w to PA and v to PB.

Corrupt Parties: If PB is corrupt, ∆B and v may be chosen by A. For a corrupt
PA, A can choose w (and then v is recomputed accordingly).

Key Query: If PA is corrupted, A may send a message (guess,∆′) with ∆′ ∈ Fpr .
If ∆′ = ∆, send success to PA. Else, send abort to both parties and abort.

Figure 6.1.: Functionality for Programmable VOLE

57

6. MPC with Identifiable Abort

A VOLE correlation consists of two vectors u ∈ Fm
p ,w ∈ Fm

pr held by PA, and the
element ∆B ∈ Fpr and a vector v ∈ Fm

pr held by PB, such that w = u ·∆B + v. ∆B and
v are chosen uniformly at random, while the Fprog

VOLE functionality allows the sender to
program its share u of the correlation by providing a seed. Hence, when running two
instances of Fprog

VOLE with different receivers PB, P
′
B but the same seed, the sender PA ends

up with the same values u as part of its VOLE correlations. The Expand function in
Fprog

VOLE should be a pseudorandom generator, whose precise implementation depends on
how the protocol is instantiated (for instance, when using LPN-based VOLE [BCGI18;
WYKW21], Expand is an LPN-based PRG).

One can view a VOLE correlation as an information-theoretic MAC on the vector u of
PA. This is because: Fprog

VOLE does not reveal ∆B to the sender. Assume that PA could
produce a pair of vectors u′ ∈ Fm

p ,w
′ ∈ Fm

pr with u′ ̸= u such that the VOLE correlation
holds, along with the original u,w. Therefore,

w = u ·∆B + v, w′ = u′ ·∆B + v (6.1)

That means for the pairs, it needs to hold that (w[i]−w′[i])/(u[i]− u′[i]) = ∆B (where
the index i ∈ [1,m] is such that u[i] ̸= u′[i]). In order for this to hold, PA needs to know
the secret ∆B if it can forge a MAC on a different value u′. However, ∆B is chosen
randomly from a set of size pr so the probability of a correct guess is negligible if pr is
exponential in the security parameter.

In Fprog
VOLE, PB only obtains ∆B,v which are chosen uniformly at random and indepen-

dent of u. Therefore, PB learns no information about u from its share of the correlation.
The MAC scheme implied by VOLE is also linearly homomorphic. Details can be found
e.g. in [BDSW23].

6.2.3. Signatures

In this work, we crucially rely on digital signatures and we use the standard security
notion for digital signature schemes, namely, existential unforgeability under adaptive
chosen-message attacks (EUF-CMA).

Definition 6.3 (Signature Scheme). A signature scheme consists of the following three
PPT algorithms,

Gen(1λ): On input the security parameter λ, outputs a public key pk and signing key sk.

Sig(sk,msg): On input the signing key sk and message msg ∈ {0, 1}∗ outputs a string σ.

Ver(pk, σ,msg): On input a public key pk, signature σ and message msg ∈ {0, 1}∗ outputs
a bit b.

We require that (Gen,Sig,Ver) is correct, namely that

Pr
msg∈{0,1}∗

[
Ver(pk, σ,msg) = 1

∣∣∣∣∣ (pk, sk)← Gen(1λ)
σ ← Sig(sk,msg)

]
= 1

58

6.2. Preliminaries and Notation

Functionality FCommit

The functionality runs between a set of parties P and an adversary A.

Commit: On receiving (Commit, Pi, x) from Pi, store (Pi, x) and send Pi to all
parties.

Open: On receiving (Open, Pi, Pj) from Pi, retrieve x and send (x, Pi) to Pj .

Public Open: On receiving (Open, Pi) from Pi, retrieve x and send (x, Pi) to all
parties.

Figure 6.2.: Functionality for a Commitment

Functionality FRand

The functionality runs between a set of parties P and an adversary A. The
adversary can corrupt a subset of the parties, denoted by I.

Upon receiving a description of a domain Fm
pr from every party in P, uniformly

sample (x1, . . . , xm)← Fm
pr and send this to A. If A responds with Deliver, send

x1, . . . , xm to all parties and terminate. Otherwise, if A sends (Abort,J), where
J ⊂ PA, send (Abort,J) to all parties and terminate.

Figure 6.3.: Functionality for Coin Tossing with Identifiable Abort

Definition 6.4 (EUF-CMA security). Given a signature scheme (Gen,Sig,Ver) and
security parameter λ, we say that Sig is EUF-CMA-secure if any PPT algorithm A has
negligible advantage in the EUF-CMA game, defined as

AdvEUF-CMA
A = Pr

[
Ver(pk, σ∗,msg∗) = 1

∧msg∗ ̸∈ Q

∣∣∣∣∣ (pk, sk)← Gen(1λ)
(msg∗, σ∗)← ASig(sk,·)(pk)

]
,

where ASig(sk,·) denotes A’s access to a signing oracle with private key sk and Q denotes
the set of messages msg that were queried to Sig(sk, ·) by A.

6.2.4. Basic Functionalities

We additionally use a one-to-many commitment functionality FCommit, shown in Figure 6.2,
as well as a coin-tossing functionality, FRand, in Figure 6.3.

These functionalities should have identifiable abort. UC commitments (with identifiable
abort) can be easily realized with a random oracle or CRS and a broadcast channel, while
coin-tossing can be realized using FCommit with a standard commit-and-open approach.

59

6. MPC with Identifiable Abort

6.3. Online-Extractable Protocols

We now define a new subclass of UC-secure protocols, which we call online-extractable.
For such a protocol π we define a special experiment called the extractor execution, that
runs with a PPT iTM called the extractor, E , which must extract the inputs of the
adversary during a real execution of the protocol. The extractor is allowed to manipulate
any Common output functionalities (see Definition 6.5) used in π, or observe any random
oracle queries, as well as see all communication between the adversary and any hybrid
functionalities or honest parties. Otherwise, the protocol π is run as in the real world
experiment. This manipulation done by E should not be noticeable to the environment,
while the inputs extracted by E should be indistinguishable from those that the simulator
S obtains in the ideal world.

The definition is inspired by many security proofs of UC protocols, where the simulator
S in the ideal setting simulates by running the actual protocol π with dummy inputs
for honest parties. At the same time, S can extract the actual inputs of the dishonest
parties that are controlled by A without actually deviating from the protocol9. This
means that many protocols have this extractability property already, and constructing E
for them will be simple by manipulating S (removing equivocation etc). We will later
see that such E comes in handy when simulating protocols that have identifiable abort
without relying on adaptive security.

Defining Online Extractability.

Towards formalizing online extractability, let π be a protocol that UC-implements a
functionality F , possibly using some other hybrid functionalities. For simplicity, we
assume that parties in π either communicate directly or access hybrid functionalities. We
call certain hybrid functionalities “Common output functionalities” if their input/output
behavior towards parties is independent of which party called it:

Definition 6.5 (Common Output Functionality). A functionality F is a Common output
functionality if, on receiving an input (sid, x) from party Pi, the functionality will give
the same response that it would also give (i) upon later query (sid, x) by Pi; and (ii)
upon query (sid, x) by any other party Pj at any point.

Some examples of Common output functionalities are the standard CRS functionality
FCRS (where x = ⊥) or a random oracle. Definition 6.5 essentially rules out that F has
an updatable memory that would change query results over time, unless the update is
provably undetectable to protocol parties.

Let us denote by F̂ a version of the ideal functionality F which immediately outputs
any inputs from A to F onto a special tape. We call this special tape the ideal input tape.
It can neither be seen by parties nor A or the environment in any security experiment.

We also denote by [π]E the extractor execution of protocol π, which is a modified
execution of a protocol π with the extractor E , where:

9A similar idea, although in the context of public verifiability, was used previously, e.g. in [BDD20].

60

6.3. Online-Extractable Protocols

1. E is allowed to observe the inputs sent to any Common output functionality and
freely program the output which is given in response to any input;

2. Every message sent between two parties Pi, Pj , where Pi is honest and Pj corrupt,
is first given to E and then forwarded to the receiver;

3. Every (non-common-output) hybrid functionality FH in π is modified to F̂H , with
an ideal input tape only accessible to E , on which the inputs from A to FH are
placed.

4. E continuously outputs certain values, whenever they are available, on a special
tape of its own, called the extractor tape.

As with the ideal input tape of F̂ , we assume that in the extractor execution [π]E , the
extractor tape cannot be accessed by any party, functionality, adversary or environment
unless mentioned otherwise. The only difference between [π]E and π that may be
noticeable to the environment is the change to the Common output functionalities.

We now formally define online extractability.

Definition 6.6. Let π be a protocol that UC-securely implements an ideal functionality
F with a fixed set of parties P and corrupted parties PA ⊂ P. Then, we say that π is
online-extractable for corrupt PA if there exists a PPT iTM E , and a UC simulator S for
π, such that, for all environments Z and adversaries A who statically corrupt the parties
in PA:

1. Z cannot distinguish π ◦ A from [π]E ◦ A (where the extractor tape of E is not
available to Z or A).

2. The distribution of the ideal input tape of F̂ in F̂ ◦ S is indistinguishable from that
of the extractor tape of E in [π]E ◦ A.

UC Security vs. Online Extractability. The motivation for Definition 6.6 is that many
existing UC-secure protocols can easily have such an online extractor E . On the other
hand, we highlight that this does not imply that the extractor E is a good UC simulator
for π. Indeed, while E is required to successfully extract the corrupted parties’ inputs,
it does not (and cannot) equivocate by simulating protocol messages to be consistent
with outputs of an ideal functionality. Later, when we use the definition, we will restrict
ourselves to a class of protocols where such equivocation is not needed.

We also observe that online extractability is not implied by UC security. Consider a
UC-secure protocol π that uses a trapdoor in the CRS for extraction, such as the oblivious
transfer protocol of [PVW08]. Moreover, let FMPC be a general MPC functionality. We
construct a protocol π′ as follows:

1. Generate a CRS crs′ for π, using FMPC, by running a sampling algorithm for the
CRS distribution inside FMPC, seeded using secret randomness.

2. After crs′ is output by FMPC, run π using crs′.

61

6. MPC with Identifiable Abort

Assuming that FMPC is UC-secure, π′ is also UC-secure. To construct a simulator for
π′, one uses the simulator of π to generate a CRS crs that can be used for equivocation.
Then, the simulator for π′ programs FMPC’s output to be crs and otherwise runs the
simulator of π as before. Indistinguishability of the new simulator follows because of the
indistinguishability of the simulator of π, as crs must be indistinguishable from crs′ by
assumption.

At the same time, π′ is clearly not online-extractable because no E can change the
outputs of FMPC, which would be necessary in order to extract inputs of the adversary
as in π.
Remark 1. Clearly, if FMPC was replaced with a normal CRS functionality then its
output could be programmed. Hence, this makes the above counter-example somewhat
contrived, and it might be that all “natural” UC protocols are indeed online-extractable.
Unfortunately, a broader definition which may be implied by UC security10 seems tricky
to formalize, since there are always more convoluted counter-examples that can evade
Definition 6.5 or similar requirements: for example, a protocol might use FMPC both
to perform some useful computation, and simultaneously to generate a CRS used in a
subsequent protocol.

Composition of Online Extractability.

We now provide a lemma which shows under which conditions the online extractability
property composes. For this, for protocols ρ, π and a functionality F we define ρF→π to
be the protocol that replaces the functionality F in ρ with an instance of π as usual in
UC composition. We show that in such a case the composed protocol is online-extractable
if ρ as well as π are online-extractable.

Lemma 6.1. Let ρ be a protocol that UC-securely implements Fρ in the F-hybrid model
and is online-extractable for a corrupt set PA ⊂ P. Let π be a protocol that UC-securely
implements F and is online-extractable for corrupt PA. Then ρF→π is online-extractable
with the same Fρ and PA.

The computational overhead from this composition is additive for each functionality
that gets replaced as we only run the new Eπ parallel to π. We can therefore apply the
lemma a polynomial number of times.

In this part, for notation, we write ρ \ {F} to mean “all parts of the protocol ρ that
have neither in- nor output to F . We similarly write ρ \ π, if π is a subprotocol used in ρ.

Proof of Lemma 6.1. To prove the statement, we have to construct a PPT algorithm E
that fulfills Definition 6.6 for ρF→π. We can assume that Eρ exists for the protocol ρ and
Eπ for π, and we use these to construct E .

Let [ρF→π]E be the [·]E transformation applied to the protocol but for a so-far unspecified
E . We define E as follows:
10We believe that this is unsurprising: while our definition captures an observation of many known UC

simulators, given the nature of the UC framework it seems hard to prove that all simulators must
follow this simulation strategy.

62

6.3. Online-Extractable Protocols

• Initially run an instance of Eρ and Eπ. Let both manipulate the CRS-like function-
alities for the respective protocols ρ \ π and π.

• Any messages sent between one honest party and a dishonest party in ρ \ π are
forwarded to Eρ. If the message is sent in π then we forward it to Eπ.

• Any hybrid functionality in ρ \ ({F} ∪ π) has its ideal input tape be connected to
Eρ. Any wrapped hybrid functionality in π has its ideal input tape be connected to
Eπ.

• Any output written on the extractor tape of Eπ is given to Eρ as if it was coming
from the ideal input tape of the (non-existent) wrapped F .

• The extractor tape of E will be the extractor tape of Eρ.

For criterion 1 of Definition 6.6, we have to show that ρF→π and [ρF→π]E are in-
distinguishable to any environment that does not have access to the extractor tape of
E .

The change due to wrapping functionalities and copying messages is not visible to Z
as the extractor tapes of Eρ, Eπ are not accessible to it. The only changes are due to the
changes to CRS-like functionalities. By first replacing the CRS-like functionalities as
done by Eρ and then as done by Eπ we get exactly the CRS-like functionality behavior of
E , and thereby indistinguishability by a hybrid argument.

For the second criterion, observe that by assumption, the extractor tape of Eπ is
indistinguishable from the ideal input tape of F̂ because π is online-extractable using
Eπ. But this in particular means that the extractor tape of Eρ must have the same
distribution, both when using F̂ or the output of Eπ, as we’d otherwise have constructed
a distinguisher for Eπ (since the only interaction that Eρ has with Eπ is via its extractor
tape). Therefore, E must have an extractor tape distribution indistinguishable from
F̂ρ.

2-Message OT is Online-Extractable.

To give an example of an online-extractable protocol, we observe that any 2-message OT
protocol in the CRS model, such as [PVW08], is online-extractable against a corrupted
receiver. We will later build on this for showing that VOLE can be realised with online-
extractable protocols. We assume a standard OT functionality FOT, for instance, as
in [PVW08].

Lemma 6.2. Let Π be any 2-message protocol that securely realizes the FOT functionality
in the FCRS-hybrid model. Then, Π is online-extractable for a corrupted receiver.

Proof. Recall that in 2-message OT, the receiver must always send the first message.
Without loss of generality, any simulator for a corrupted receiver can then be defined in
terms of the randomized algorithms:

• crsSim: On input the security parameter, it outputs a crs together with a trapdoor
τ .

63

6. MPC with Identifiable Abort

• ExtA: On input crs, τ and a receiver message msgA, it outputs an extracted input
σ ∈ {0, 1}.

• SimA: On input crs, τ , a message msgA and the receiver’s output xσ, it outputs a
simulated sender message msgB.

The UC simulator uses crsSim to emulate FCRS, and then, on receiving the adversary’s
message msgA, extracts its input σ using ExtA and the trapdoor, before receiving xσ

from the ideal functionality and simulating the sender’s response using SimA.
We define the extractor E , which starts by emulating FCRS using crsSim, and then uses

the trapdoor τ and the intercepted msgA from the honest receiver to extract an input σ
with ExtA, which it writes to the special extractor tape. The only difference between the
two executions [π]E ◦ A and π ◦ A to any Z is the way the CRS is sampled; but since Π
is a secure protocol, these must be indistinguishable. Furthermore, since the extractor
tape is defined using ExtA, it is distributed identically to the extracted input in the UC
simulation, as required.

Online Extractability of VOLE

We show that the VOLE protocol from Wolverine [WYKW21] can be used to realise Fprog
VOLE

(Figure 6.1), and satisfies the online extractability property for a corrupt PA. Although
Wolverine was originally shown to realize a non-programmable VOLE functionality FVOLE
(where the output of an honest PA is sampled at random by the functionality), as observed
in [RS22], it can easily be extended to be programmable. The analysis in this section is
focused on the non-programmable variant, but applies equally to the programmable one.

Single-Point VOLE.

The main component of the VOLE construction is a protocol for single-point VOLE, where
PA’s vector u has a single non-zero entry. This is modelled by a functionality FspVOLE,
which is then used to build FVOLE using the LPN assumption. The latter transformation
is completely non-interactive, so clearly online extractable in the FspVOLE-hybrid model.
We now analyze the protocol ΠspVOLE that realizes FspVOLE, which is significantly more
complex and also uses several setup functionalities.

Setup Functionalities: FOT, FEQ and FVOLE.

ΠspVOLE uses three hybrid functionalities: oblivious transfer (FOT), equality testing and
a smaller FVOLE functionality (which is essentially bootstrapped to the larger, more
efficient one). Using Lemma 6.2, we can replace FOT by a 2-round OT protocol in the
FCRS model, and preserve online extractability, since PA is always the OT receiver. FEQ
is a weak equality test functionality, which leaks PA’s input if the two parties’ inputs
differ. It can be easily realized using random oracle based commitment, as described
in [WYKW21]. In the resulting protocol, after receiving a commitment from PB, PA sends
its input in the clear to PB; this makes the protocol trivially online extractable. Finally,

64

6.3. Online-Extractable Protocols

the FVOLE functionality used as setup can be realised with FOT using OT extension
techniques [Roy22]. After analyzing ΠspVOLE, we will argue that this setup VOLE protocol
also satisfies online extractability.

Online Extractability of Single-Point VOLE.

In the following, we refer to the protocol and proof of ΠspVOLE, which realizes the
functionality FspVOLE, in Fig. 7 and Theorem 3 of [WYKW21].

Proposition 6.3. The protocol ΠspVOLE for single-point VOLE in [WYKW21. Fig. 7]
is online-extractable for a corrupt PA.

Proof. To show online extractability, we need to show the existence of an extractor E ,
which can extract all inputs that are sent to FspVOLE in a way that is indistinguishable
from the inputs sent by the simulator in the ideal world. Before defining E , we briefly
recap the simulator from the proof in [WYKW21. Theorem 3] for a corrupt PA. Briefly,
the view of PA in this protocol consists of the following:

• Interaction with hybrid functionalities FVOLE, FOT and FEQ

• A value d sent by PB, used to fix one of PB’s outputs to the correct value

The simulator, S, emulates the hybrid functionalities and produces a value d, while
interacting with FspVOLE. These interactions happen as follows:

• The FVOLE functionality does not send any output to the adversary; the simulator
simply receives PA’s inputs.

• For the FOT invocations, where PA plays receiver, the simulator receives the choice
bits ᾱi and responds by sending random values Ki

ᾱi
to the adversary (in the protocol,

these are instead pseudorandom, derived using a GGM tree).

• The simulated d is sampled uniformly at random.

• In FEQ, S receives a value VA from the adversary, and compares this with V ′A,
which is computed based on previously extracted values known to S. If they differ,
it then defines a key guess ∆′ that is sent to FspVOLE. If the guess is incorrect, then
FspVOLE aborts and S also aborts. Otherwise, S sends a response to the corrupt
PA and sends PA’s extracted input to FspVOLE.

In [WYKW21], it is argued that when using S, the ideal execution is computationally
indistinguishable from the real execution.

We now define the extractor E . Recall that E may observe all the inputs to the
hybrid functionalities FVOLE,FOT,FEQ, as well as all communication. Since there are
no CRS-like functionalities in use, the only task of E is to write to its extractor tape
the relevant inputs to FspVOLE. By observing the inputs to the hybrid functionalities, E
has all the same information that S uses to define PA’s inputs. In particular, when FEQ
is called by PA, E can use the previously extracted values to check VA, and if needed,

65

6. MPC with Identifiable Abort

define the key guess ∆′ and write this to the tape. Then, if the protocol did not abort, E
writes PA’s extracted input, computed the same way as S, to its tape. Since the values
E writes to its extractor tape can be computed exactly the same way as the values sent
by S to FspVOLE, it follows that ΠspVOLE is online-extractable.

Online Extractability of the VOLE Setup.

Since ΠspVOLE uses a smaller VOLE functionality as setup, we need to show that this can
also be implemented with online extractability. We consider the main VOLE protocol
from [Roy22], which is in the FOT-hybrid model. In our case, the party PA translates to
the VOLE sender in [Roy22]. Most of the challenges in that security proof come from
extracting the sender’s input when it is corrupt; simulating the view of the adversary is
actually trivial, and done exactly as in the protocol. Online extractability is therefore
straightforward, as the extractor can simply run the simulator to obtain the extracted
inputs.

6.4. Homomorphic Commitments Based on VOLE
In this section, we first define a functionality for homomorphic commitment, FHCom,
which will be used as a building block in our preprocessing phase. We then show how to
efficiently instantiate this with a sender-receiver protocol based on VOLE, giving security
with abort. Using the compiler of Section 6.5, this can be directly upgraded to achieve
identifiable abort.

The functionality, shown in Figure 6.4, allows a sender to input values that will be
committed, as well as have random committed values sampled by the functionality.
FHCom allows linear operations to be performed on the commitments, and for values to
be opened privately to any one receiver, as well as publicly to all receivers. Note that
FHCom only supports selective abort, and not unanimous abort. However, our compiler
to identifiable abort only requires a protocol with selective abort.

Information-theoretic MACs.

We now introduce the notation for information-theoretic MACs as we use it in the
protocol, building on Section 6.2.2. In the protocol, the sender PS will be committed to
values in Fp by holding a MAC on x ∈ Fp for each receiver, under keys known only to
the receivers. The linear MAC with a receiver Pi is defined as,

MS
i JxK = x ·∆i +Ki

SJxK

where ∆i ∈ Fpr is a long-term or global key and Ki
SJxK ∈ Fpr is a local key, used only for

the MAC on x. Both keys are held by receiver Pi, while PS holds x and MS
i JxK (for each

i ∈ [n]).11 We occasionally write MS
i ,K

i
S when it is clear from context which value is

being MACed.
11Note that the index in superscript denotes the party who holds a value.

66

6.4. Homomorphic Commitments Based on VOLE

Functionality FHCom

Parameters: Finite field Fp. The functionality runs between a sender PS and a
set of receiver parties PR = {P1, . . . , Pn}. We assume all parties have agreed upon
public identifiers idx, for each variable x used in the computation. For a vector
x = (x1, . . . , xm), we write idx = (idx1 , . . . , idxm).

Input: On receiving (Input, idx,x) from PS , where x ∈ Fl
p, where l is the length

of the vector, and (Input, idx) from all the other parties, store the pair (idx,x),
and send InputReceived to A.

Linear Operation: On receiving (LinComb, idz, idx, idy,α,β,γ) from every Pi,
compute z = α⊙ x + β ⊙ y + γ and store (idz, z).

Random: On receiving (Random, idr,m) from all parties:

1. Sample r ← Fm
p . If PS ∈ PA, instead receive r from A.

2. Store (idr, r) and send r to PS .

Private Opening: On receiving (PrivOpen, idx, Pj) from PS and if (idx,x) is
stored, send x to Pj .

Output: On receiving (Output, idz) from every Pi, where idz has been stored
previously, if PS ∈ PA, send Abort to the parties A chooses, and deliver z to the
rest. If PS ∈ PH , deliver z to all parties.

Figure 6.4.: Functionality for a Homomorphic Commitment

67

6. MPC with Identifiable Abort

Protocol ΠHCom

Parameters: Extension field Fpr , a sender PS and receivers PR = {P1, . . . , Pn}.

Initialize: Every pair of parties (PS , Pi), for Pi ∈ PR, calls an instance of Fprog
VOLE

with Init, so Pi receives ∆i ∈ Fpr .

Input: PS commits to an input x ∈ Fp:
1. PS broadcasts x− lj , where lj is the next available random value, to all the

parties. If no such lj is available, run the Random procedure.
2. Each Pi ∈ PR, locally updates its key as Ki

SJxK = Ki
SJljK−∆i · (x− lj). PS

sets MS
i JxK = MS

i JljK.
3. Pi ∈ PR sets ⟨x⟩i = Ki

SJxK and PS sets ⟨x⟩S = (x, {MS
i JxK}i∈[1,n]), for

Pi ∈ PR.

Linear Operation: To compute z = α ·x+β · y+γ, for public α, β, γ ∈ Fpr , where
⟨x⟩, ⟨y⟩ have been committed, the parties locally compute ⟨z⟩ = α · ⟨x⟩+β · ⟨y⟩+γ.

Random: To generate m random commitments ⟨l1⟩ , . . . , ⟨lm⟩:
1. PS samples a seed s.
2. Each pair of parties (PS , Pi), for Pi ∈ PR, calls Fprog

VOLE, with PS sending
(Extend, s) and Pi sending Extend. PS obtains {uS ,MS

i } and Pi receives
Ki

S = MS
i − uS ·∆i.

3. Each Pi ∈ PR sets
〈
lj
〉i = Ki

S,j and PS sets
〈
lj
〉S = (uS

j , {MS
i,j}i∈[1,n]), for

j ∈ [1,m+ 1].
4. The parties do the following to check the consistency of inputs to Fprog

VOLE:
a) Call FRand to get random values χ1, . . . , χm ∈ Fpr .

b) Locally compute ⟨C⟩ =
m∑

j=1
χj ·

〈
lj
〉

+ ⟨lm+1⟩

c) Write ⟨C⟩S = (C, {MS
i }i∈[n]) and ⟨C⟩i = Ki

S .
d) PS broadcasts C, and privately sends MS

i to each Pi.
e) Each Pi checks that MS

i = C ·∆i +Ki
S , for i ∈ [1, n]. If the check fails,

abort.

Private Output: To open a value ⟨x⟩ to a receiver Pi, PS privately sends x, MS
i JxK

to Pi. Pi checks that MS
i JxK = ∆i · x+Ki

SJxK and aborts if it fails.

Output: To open a vector of values ⟨z⟩, PS sends z, MS
i JzK to Pi. Each Pi checks

that MS
i JzK = ∆i · z + Ki

SJzK. If the checks fail, Pi outputs abort. Otherwise, Pi

outputs z.

Figure 6.5.: Protocol for a Homomorphic Commitment

68

6.4. Homomorphic Commitments Based on VOLE

When x is MACed with every other receiver, we use the notation

⟨x⟩ = {(x, {MS
i JxK}i∈[n]),K1

SJxK, . . . ,Kn
SJxK}

We write ⟨x⟩i to denote the parts of ⟨x⟩ known to Pi, that is, ⟨x⟩i = Ki
SJxK if i ∈ [n]

and ⟨x⟩S = (x, {MS
i JxK}i∈[n]) for the sender PS .

We write ⟨x⟩+ ⟨y⟩ to denote addition of each party’s respective components, which
gives a valid set of MACs ⟨x+ y⟩, thanks to the linearity of the MACs. We also write
⟨x⟩+ γ to denote adding a public constant γ to ⟨x⟩, which is done by having PS add γ
to x, while each receiver Pi subtracts γ ·∆i from Ki

SJxK, giving ⟨x+ γ⟩.

6.4.1. Protocol with Abort
Our protocol (Figure 6.5) is based on a similar MAC generation protocol from [RS22],
with the difference that we only have a single sender instead of n senders, which allows
us to simplify the protocol. MACs are set up using the VOLE functionality Fprog

VOLE
(Figure 6.1) introduced in Section 6.2.2, which generates a batch of random MACed
values between two parties. Importantly, even though the authenticated values are
random, the Fprog

VOLE functionality allows the sender to program these by providing a seed,
such that when running two instances of Fprog

VOLE among different receivers, it ends up
committed to the same set of random values.

Consistency Check.

Since Fprog
VOLE does not guarantee that in each pair (PS , Pi) for i ∈ PR, PS inputs the same

seed s, we use a consistency check in ΠHCom. In the check, the receivers challenge the
sender to open a linear combination of all the committed values, with an extra random
mask (lm+1) to ensure privacy of the opened combination. We formalise the security of
the check by modelling the errors introduced by a corrupt PS as follows.

Suppose that PS used inconsistent seeds with two receivers P1 and P2. Since the
seeds are used to compute the u values using the Expand function, this will result in
two different u values, say, u1 and u2, and hence, different commitments

〈
l1j

〉
,
〈
l2j

〉
.

Without loss of generality, define the seed used with party P1 to be the correct seed.
In the security proof, the simulator can extract all seeds and then compute the errors
δ2

j = l2j − l1j , for j ∈ [1,m+ 1]. If both PS and the receiver party are corrupt, we set the
errors to be 0. We prove that an adversary cannot pass the check with inconsistent seeds
except with negligible probability via the following lemma.

Lemma 6.4. Suppose PS ∈ A introduces errors of the form δi
j with party Pi, for

j ∈ [m+ 1], in the Random command in ΠHCom (Figure 6.5). If the consistency check
passes, then every pair of parties (PS , Pi), for i ∈ [1, n] hold a secret sharing of lj ·∆i,
for j ∈ [m]. In other words, δi

j = 0, for every i and j ∈ [m], except with probability 1/|F|.

Proof. Let the seed used with party P1 be the “correct" seed, denoted by s. If a corrupted
sender PS used a different seed si in step 2 with a party Pi, this will result in additive
errors δi

j in the
〈
ℓj
〉

values that are committed to Pi.

69

6. MPC with Identifiable Abort

In step 4d of the consistency check, A may send an incorrect MAC value it sends
to each Pi; let us denote this by M̃S

i , and by MS
i the actual MAC derived from the

authenticated values. Then, the following relation needs to hold in order for the adversary
to pass the check with party Pi,

M̃S
i = (C +

m∑
j=1

χj · δi
j + δi

m+1) ·∆i +Ki
S

= MS
i + (

m∑
j=1

χj · δi
j + δi

m+1) ·∆i

This gives M̃S
i −MS

i = (∑m
j=1 χj · δi

j + δi
m+1) ·∆i. Since the χj values are sampled

after A picks the errors δi
j , and at least one value of δi

j , for j ∈ [m], is non-zero, and A
does not know ∆i for the honest parties, then the value on the right of the equation is
uniformly random to A. Therefore, the probability of A passing the check is at most
1/|F|.

Theorem 6.5. Protocol ΠHCom UC-securely realises the functionality FHCom assuming a
broadcast channel in the presence of a malicious adversary that can statically corrupt up
to n− 1 parties, in the

(
Fprog

VOLE,FRand
)
-hybrid model.

Proof. We have two cases of corruption. One is when the adversary corrupts the sender
and some of the receivers and the other is when the adversary corrupts a set of only
receivers.

For both cases, we construct a PPT Simulator (S) that runs the adversary (A) as
a subroutine, and is given access to FHCom. It internally emulates the functionalities
Fprog

VOLE,FRand and we implicitly assume that it passes all communication between A and
the environment (Z).

The parties controlled by the A are indicated by PA and the honest parties by PH.
The sender is denoted by PS and receiver parties are denoted by PR. The S also keeps
track of a flag that is set to 0 initially, and set to 1 if the A cheats in any of the steps.

Adversary corrupts a subset of receivers and PS (Case 1).

The simulation proceeds as follows:

Initialize: S receives Init and emulates Fprog
VOLE. It receives ∆i from Pi, where Pi ∈ PA

and Pi ∈ PR and stores it.

Input: S receives a message d from the adversary. S uses the next unused lj that was
generated in Random and sends (Input, idx, x), where x = d + lj , to FHCom, and stores
(idx, x).

70

6.4. Homomorphic Commitments Based on VOLE

Linear Operation: These are local operations. S computes z = α · x + β · y + γ
(also the corresponding MAC), picks a new id idz, stores (z, {MS

i JzK}i∈PH
), and sends

(LinComb, idz, idx, idy, α, β, γ) to FHCom.

Random:
1. S receives (Extend, si) from PS for i ∈ PH . S also receives MS

i from a corrupt PS ,
for all i ∈ PH , and stores them. If PS sends inconsistent seeds, S sets flag = 1. We
do not simulate the case when both the sender and receiver are corrupt.

2. If flag = 0, S sets uS = Expand(s) and stores
〈
lj
〉

= {uS
j , w

S
j } as PS ’s shares. If

flag = 1, S arbitrarily chooses one of the seeds received and computes
〈
lj
〉

with it.
3. S samples χ1, . . . , χn ∈ Fpr and sends them to A to emulate FRand.

4. S stores C̃S ,
(
M̃S

i

)
i∈[1,PH]

it receives from PS .

5. If C̃S = CS and flag = 0, send (Random, idl, l, PS) to FHCom, along with s, where s
is the seed received in step 1.

6. If C̃S = CS and flag = 1, or C̃S ̸= CS , send abort to FHCom and abort.

Private Opening: S receives (z, M̃S
i JzK), where z is a previously stored value and

i is the index of the party to open to. It checks if M̃S
i JzK = MS

i JzK, since the simula-
tor knows what the MAC on z is supposed to be. If the MACs are not consistent, it aborts.

Batch Opening: S receives (z, M̃S
i JzK), where z are a set of stored values, for all

i ∈ PH . It checks if M̃S
i JzK = MS

i JzK, since the simulator knows what the MAC on z is
supposed to be. If the MACs are not consistent, it aborts.

Output: S receives (z, M̃S
i JzK), where z is a previously stored value, for party Pi. It

checks if M̃S
i JzK = MS

i JzK, since the simulator knows what the MAC on z is supposed to
be. If the MACs are not consistent, it aborts.

We need to argue that an adversary A cannot distinguish whether it interacts with
ΠHCom or the simulator S equipped with FHCom. First we’ll prove indistinguishability of
the simulator when PS ∈ PA along with a subset of the receivers.

During Initialize, in both worlds the adversary picks its own random values ∆i for the
corrupt receivers. In Input, in the real world, A sends a message d, which is supposed
to be x− lj , where lj is unused random value generated in Random. In the ideal world,
the adversary sends a message d and the simulator extracts the adversary’s input by
computing d− lj since it knows lj , and sends it to FHCom. For Random, in the ideal
world, the S receives the seeds and adversary’s MACs. Then the S decides to abort if it
received inconsistent seeds. If A cheats by sending inconsistent seeds, S always aborts
where as in the real world the A can pass the check with probability 1/pr, as proven in

71

6. MPC with Identifiable Abort

Lemma 6.4. Therefore, Random is indistinguishable except with negligible probability.
In the Output phase, the simulator always aborts if the MAC sent by the adversary
is incorrect, as it knows what the correct MAC is supposed to be. In the real world, A
can send an inconsistent MAC and still pass the check, if it manages to guess the honest
parties’ ∆ values correctly, which happens with negligible probability. The argument is
similar for the Private Opening and Batch Opening commands.

Adversary corrupts only a subset of receivers (Case 2).

The simulation proceeds as follows:

Initialize: S receives Init from A and emulates Fprog
VOLE. It receives ∆i from Pi, where

Pi ∈ PA and stores it. S sends Init to FHCom.

Input: S samples d uniformly, sends it to the adversary, and sends (Input, idx) to
FHCom.

Linear Operation: These are local operations. S computes KS
i JzK = α ·KS

i JxK + β ·
KS

i JKy for all i ∈ PA. It sends (LinComb, idz, idx, idy, α, β) to FHCom.

Random:
1. S receives Extend from Pi for i ∈ PA and receives vi from A.
2. S samples χ1, . . . , χn ∈ Fpr and sends them to A to emulate FRand.

3. S picks CS ,
(
MS

i

)
i∈[1,n]

such that the check in step 4e passes, and sends them to
PA.

Private Opening: S sends (PrivOpen, idz, Pi) on behalf of PA to FHCom to privately
open the value to Pi. It receives z from FHCom, and picks MS

i JzK such that check passes
and sends it to Pi.

Output: S sends (Output, idz) to FHCom to receive the output z. It computes
MS

i JzK = Ki
SJzK + ∆i · z and then outputs (z,MS

i JzK), for all i ∈ PH .

Now we’ll provide the indistinguishability argument for the case when PS /∈ PA. During
Initialize, in both worlds the adversary picks its own random values ∆i for the corrupt
receivers. In Input, in the real world A receives a random share of the senders input. In
the ideal world, A receives a random message d. For Random, in the real world S sends
CS ,

(
MS

i

)
. The adversary will check whether MS

i = CS ·∆i +Ki
SJCK but S knows ∆i

and Ki
SJCK so it can pick CS ,

(
MS

i

)
accordingly so that the check always passes. In

72

6.4. Homomorphic Commitments Based on VOLE

the Output (and similarly in Private Opening and Batch Opening, S receives the
output z from FHCom and computes the appropriate MAC which sends to A.

6.4.2. Online Extractibility of ΠHCom

Lemma 6.6. Protocol ΠHCom in Figure 6.5 is online-extractable, for any adversary
corrupting the sender and any subset of receivers.

Proof. Let S be the simulator for ΠHCom given in the proof of Theorem 6.5, for the case
when the sender and a subset of the receivers are corrupted. In ΠHCom, there is never
any communication from a receiver to the sender, so the only task of S is to emulate the
hybrid functionalities Fprog

VOLE and FRand towards the adversary, while interacting with the
FHCom functionality. We can therefore use S to define the extractor E , running in the
execution [π]E , as follows:

• E runs an internal copy of S; since E receives any message sent from the corrupt
sender to an honest receiver, it can forward these messages to S, acting as the
adversary.

• Whenever A sends a message to a hybrid functionality Fprog
VOLE, E forwards the

message to S.

• Whenever S calls FHCom with some message msg, E outputs msg on its special
extractor tape. E responds to S exactly as FHCom would; this is possible because
PS is corrupted, so E knows all of the committed inputs and can correctly open
them as needed. If FHCom aborts, then E aborts.

To show that E is a good extractor, we first require that the executions π ◦ A and
[π]E ◦ A are indistinguishable. The only difference between the two executions is that E
is simulating the Fprog

VOLE instances, and also may abort in case the underlying simulator
S aborts. However, it follows from the proof of Theorem 6.5 that these differences are
negligible.

Secondly, we must show that the special extractor tape in [π]E is indistinguishable
from the special functionality tape of F̂HCom in F̂HCom ◦ S to any environment Z. This
is trivially true, because E is running S the same way as in an ideal execution, and the
extractor tape of E contains exactly the messages S sends to FHCom.

Online Extractability of VOLE Protocol.

To use ΠHCom in our compiler for identifiable abort, it is not enough that ΠHCom is
online-extractable on its own, since the compiler from Section 6.5 requires that ΠHCom
only uses FRand and/or FCRS as its hybrid functionalities. We show that Fprog

VOLE can be
replaced with a VOLE protocol in the FOT-hybrid model, where the sender plays the
OT receiver, and this protocol is online-extractable when the sender is corrupted. Since
we showed in Lemma 6.2 how to realize FOT in an online-extractable way, by applying

73

6. MPC with Identifiable Abort

Functionality F IA
HCom

Parameters: Finite field Fp. The functionality runs between a sender PS and a
set of receiver parties PR = {P1, . . . , Pn}. We assume all parties have agreed upon
public identifiers idx, for each variable x used in the computation. For a vector
x = (x1, . . . , xm), we write idx = (idx1 , . . . , idxm).

Inherits Input, Linear Operation, Random, Output, and Private Opening
from FHCom.

Abort Behaviour: A may corrupt any subset I ⊂ PS ∪ {PR}. At any point in
the protocol, it may send (Abort,J), where J ̸= ∅ and J ⊆ I, upon which the
functionality will send (Abort,J) to all parties and aborts.

Figure 6.6.: Functionality for a Homomorphic Commitment with Identifiable Abort

composition (Lemma 6.1), this gives an online-extractable protocol for Fprog
VOLE in the

FCRS-hybrid model.
The identifiable abort version of FHCom, F IA

HCom appears in Figure 6.6.

6.5. Compiling to Identifiable Abort
In this section, we show how to compile a protocol with active security with selective
abort, and online extractibility, into a protocol that achieves identifiable abort. More
specifically, we handle any class of protocols that are in the CRS model and are sender-
receiver protocols, where the receivers do not have any private inputs and do not have
any communication between them. This is defined formally below.

Definition 6.7. Let Π be a protocol realizing a functionality F in the (FCRS,FRand)-
hybrid model. We say that Π is a sender-receiver protocol if (1) No receiver has private
inputs and only interacts with the sender, except when communicating with FCRS or
FRand; and (2) Whenever the sender PS , with random tape ρS , has an input inp and
sends a message to a receiver, this is done with either:

• A broadcast channel, using a function NextBC(ρS , inp, state), which outputs an
updated state and the message msg to be broadcast. The viewS may contain any
outputs from FCRS or FRand, but is otherwise only used by NextBC.

• Private communication to receiver Pi, using a function NextMsg(ρS , Pi,msgsi, state),
where msgsi contains the set of messages previously received from Pi.

In particular, this definition implies that any messages sent from the sender to a
receiver, including via the broadcast channel, cannot depend on any previous message
sent from another receiver to the sender.

74

6.5. Compiling to Identifiable Abort

Subroutine Complain(Pi, Pj)

1. Pi broadcasts (Complain, Pj).

2. Let (m,σ) be the last message sent from Pj to Pi in round r (if Pj was
honest). Pj broadcasts (m,σ).

3. All parties check that Ver(pkj , σ, (r∥Pj∥Pi∥m)) = 1. If not, or if Pj does not
broadcast the message, the parties output abortj .

Figure 6.7.: Complaint procedure for a missing message from Pj to Pi

Algorithm VerifyAbort (pki, viewi, ρi, r)

1. Using pki, check all (mr
S,i, σ

r
S,i) pairs in viewi. If any check fails, output fail.a

2. Use viewi and ρi, and the round number r to reconstruct what the messages
of the receiver should have been according to NextMsgΠ. If the output of
the receiver is abort, output good. Else, output fail.

aAn honest receiver would not have an invalid signature in their view without having entered the
Complaint procedure which would have either identified the cheater or returned a valid signature.

Figure 6.8.: Algorithm for verifying whether a receiver should have aborted.

It is straightforward to see that if we take ΠHCom (Figure 6.5), and replace Fprog
VOLE with

any secure 2-party protocol in the CRS model, we obtain a sender-receiver protocol. In
Input, Private Output, Batch Output, and Output, PS is the only party sending
messages to the receivers in ΠHCom. In Random, it is clear that the messages sent from
PS to the receivers, and as input to Fprog

VOLE, only depend on PS ’s random tape and the
messages received from FRand. Since Fprog

VOLE is a two-party functionality, replacing it with
a secure two-party protocol ensures that the protocol messages to Pi still cannot depend
on the view of any other receiver Pj .

6.5.1. The Compiler

In the protocol (Figure 6.9), the parties start by picking a public and secret key pair for
a signature scheme, and broadcast the public key. We use an EUF-CMA secure signature
scheme (Gen, Sig,Ver). The compiler runs the original protocol Π, and in each round, the
parties add signatures to every message they are supposed to send. If any signature does
not verify, or a message was not received, the receiving party Pi initiates the complaint
procedure in Figure 6.7, which forces the sending party to broadcast the message to all
parties (or be identified as a cheater).

The main challenge is to handle the case where Π aborts, and we use different strategies

75

6. MPC with Identifiable Abort

based on the party which aborts. If there was an abort in Π, the aborting party starts
the Abort phase of the protocol, where the parties identify the cheater as follows. If a
receiver party, say Pi, aborts, then since Π is a sender-receiver protocol, it must be the
case that either PS or Pi is a cheater, so the parties just need to establish which. We
therefore have Pi broadcast its view, and open its random tape to all the parties. The
rest of the parties can locally check if Pi cheated by running the VerifyAbort algorithm,
which verifies the correctness of the messages it sent by recomputing the actual messages
using the NextMsg function. VerifyAbort has the guarantee that if run with an honest
Pi’s view and random tape, it always outputs good, and that it is not possible to frame
an honest Pi by making it output fail because that would require forging a signature.
Parties abort with either aborti or with abortS depending on who cheated.

On the other hand, if PS was the party that aborted, the natural approach would be
to have PS broadcast its view and random tape as in the earlier case. However, we do
not want to reveal the sender’s random tape. We do not want the sender broadcasting
even its view with all the receiver parties, as this poses a problem for simulation. In this
case, we are operating with an honest sender, and a subset of receivers that are corrupt.
Because this is a sender-receiver protocol, the honest receivers may have private outputs
from the sender. This means the simulator cannot forge a view for the honest sender to
give to the adversary.

Instead, we have all the receivers send their views and random tapes to the sender. The
sender locally runs Identify (Figure 6.10) on all the views and random tapes, including
its own view, to identify the receiver party that cheated. If a receiver Pi does not send
its view to the sender then the sender broadcasts a complaint message for Pi who is
then forced to broadcast its view and its random tape. Identify can reconstruct what
an honest receiver should have sent, based on the random tape of the receiver and the
NextMsg function. Then it compares these messages to the messages from the sender’s
view, which allows it to always identify if the receiver cheated. PS then broadcasts its
view only with respect to the cheating party, along with that party’s view and random
tape. The other honest parties can locally run Identify on these to be convinced that Pi

was the cheater. This avoids the problem of the simulator having to send the full view of
the honest sender. A formal description of the compiler appears in Figure 6.9.

Theorem 6.7. Let Π be a perfectly correct, sender-receiver protocol that UC-securely
realises a functionality F with active security and dishonest majority, and supports online
extractability when the sender and a subset of receivers are corrupt. Let (Gen,Sig,Ver) be
a EUF-CMA secure signature scheme. Then the compiled protocol ΠIA

Cmp securely realizes
F with active security in the FCRS,FCommit-hybrid model, and achieves identifiable abort.

Proof. We have two cases of corruption. In the first case, the sender and a subset of
the receivers is corrupt and in the second case the sender is honest and only a subset of
receivers is corrupt. For both cases, we construct a PPT Simulator (S) that runs the
adversary (A) as a subroutine, and is given access to F IA

HCom.
Whenever A communicates with FCRS, S calls the extractor E which picks whichever

CRS it wants and S forwards it to A. The ˜ (tilde) symbol is used to indicate the
potentially inconsistent views received from A.

76

6.5. Compiling to Identifiable Abort

Compiler ΠIA
Cmp

Let Π be a sender-receiver protocol that realises F, is actively secure with selective
abort and supports online extractability. Π uses a CRS. We assume that Π is a
protocol with one sender PS and a set of receivers Pj ∈ [1, n]. All the calls to
functionalities inside of Π are replaced by their corresponding protocols.

1. Before any step of the protocol is executed, each Pi sends (Commit, Pi, ρi) to
FCommit, where ρi is the random tape.

2. Each party Pi also samples a (pki, ski) pair, and broadcasts pki.

3. Run the Π protocol as follows. In each round r of the protocol,
a) Let mr

i,j be the message that Pi should have sent to Pj , according to NextMsgΠ.
Note that either Pi or Pj must be PS .

b) Pi sends (mr
i,j , σ

k
i,j) to Pj , where σr

i,j = Sig(ski, r||Pi||Pj ||mr
i,j).

c) Pj checks Ver(pki, σ
r
i,j , (r||Pi||Pj ||mr

i,j)) = 1. If not, or if Pi did not send a
message at all, Pj calls Complain(Pj , Pi) (Figure 6.7)

d) If any party Pi terminates with output abort then it initiates the Abort
procedure.

Abort:

1. If a receiver Pi aborted in round r:
a) Pi broadcasts (abort, viewi) and opens ρi publicly using FCommit.
b) All parties run VerifyAbort (pki, viewi, ρi, r) (Figure 6.8) to establish if Pi

cheated.
c) If VerifyAbort returns fail, the parties output aborti, else output abortS .

2. If the sender PS aborted:
a) PS broadcasts abort.
b) All receivers Pi send viewi to PS and privately open ρi to PS using FCommit.

i. If PS does not receive the view of some Pi, it broadcasts a complaint message
for Pi. Pi is forced to broadcast (viewi)a and publicly open ρi by calling
FCommit with Open.

ii. If Pi does not broadcast, then everyone outputs aborti.
c) PS runs IA.Identify

(
pki, viewi, ρi, pkS , viewS,i

)
(Figure 6.10) for all receivers Pi

to establish who cheated. viewS,i is the view of the the sender PS that contains
only the messages from one particular party Pi.
d) PS broadcasts viewS,i for the cheating party Pi. Pi broadcasts viewi and publicly
opens ρi using FCommit.
e) All honest parties run IA.Identify

(
pki, viewi, ρi, pkS , viewS,i

)
and output aborti.

If PS never broadcast the views, then they identify PS as the cheater.
aThis is ok because in this case either the receiver or the sender is corrupt.

Figure 6.9.: Compiler for identifiable abort
77

6. MPC with Identifiable Abort

Algorithm IA.Identify (pki, viewi, ρi, pkS , viewS)

1. Using the random tape ρi and viewi, first check if the ρi is the one that
was committed to and then compute what the messages of Pi in each round
should be. Let those be mr

i,S .

2. Check if mr
i,S ̸= m̂r

i,S , where m̂r
i,S are Pi’s messages in viewS , for all rounds

r of the protocol so far. If any of them are inconsistent, output Pi as the
cheater.

3. Else if any of the signatures from viewS fail the check
Ver

(
pki, σS , (rS ||PS ||Pi||m̂r

i,S)
)

= 1, output Pi as the cheater.

4. Else, verify signatures sent by PS . If any of them are not valid, output PS

as the cheater.

Figure 6.10.: Algorithm for identifying a cheater.

The adversary A corrupts a subset of receivers and PS (Case 1).

The simulation proceeds as follows.

1. S receives the random tapes that A picked.

2. S samples (pkH, skH) for the honest receivers, broadcasts pkH, and receives the
corresponding pkA from A.

3. S picks random tapes for the honest parties and runs the Π protocol honestly.
During the execution of Π, S sees all messages between the adversary and the
honest parties and forwards them to E who outputs A’s inputs on its extractor
tape. As E writes on its extractor tape, S forwards A’s inputs to F IA

HCom for all the
relevant commands. Additionally:

• S adds a signature to every message it sends, as in the compiled protocol.
• When S receives (mr

S,j , σ
r
S,j) it verifies the signature and if the check fails, it

broadcasts (Complain, PS). If PS fails to broadcast a valid signature during
Complain, S sends (Abort, PS) to F IA

HCom and aborts.

Abort. Depending on which party aborted in the execution of Π, S takes care of each
case as follows.

1. Abort by an honest receiver Pi:
a) S broadcasts (abort, viewi, ρi) for the honest receiver Pi who aborted.
b) S sends (Abort, PS) to F IA

HCom and aborts with output abortS .

2. Abort by corrupt receiver Pj :

78

6.5. Compiling to Identifiable Abort

a) S receives (abort, viewi, ρi) from A for some Pi.

b) S will run VerifyAbort (pki, viewi, ρi) to establish if Pi aborted.

c) If Pi indeed aborted, S will send (Abort, PS) to F IA
HCom. Else it will send

(Abort, Pi) to F IA
HCom.

3. Abort by corrupt sender PS :

a) S receives abort from A.

b) S sends (viewi, ρi) to A for all honest Pi

c) A broadcasts (ṽiewS,i, viewi, ρi) for some Pi.

d) S runs IA.Identify
(
pki, viewi, ρi, pkS , viewS,i

)
. If Pi aborted then send (Abort, PS)

to F IA
HCom. In the unusual case where Pi is also corrupt but did not abort send

(Abort, Pi) to F IA
HCom.

We will now prove why A cannot distinguish if it is interacting with ΠIA or the simulator
S equipped with F IA.

In step 1, in both worlds A chooses and broadcasts its own random tapes. In step
2 in both worlds A receives public keys for the honest parties and broadcasts the keys
that it picked. For step 3, because the honest parties have no input and their messages
only depend on what the corrupt sender sends so S can perfectly match those messages.
In step 5 if A has received a complaint message, it will broadcast (mr

S,j , σ
r
S,j) in both

worlds. In step 6, A receives an abort message in both worlds. The abort in the real
world will happen if the signature check fails. Because of the security of the signature
scheme the probability of A fooling an honest party is negligible.

In the abort phase we have three cases:
Abort by honest receiver. In step 1(a) S broadcasts (abort, viewi, ρi). This is identically

distributed to the real world, again, because S ran the real protocol Π using honestly
generated random tapes, and because the receivers have no input.

Abort by corrupt receiver. The simulator doesn’t send anything in this case so it’s
straightforward to argue indistinguishability.

Abort by corrupt sender. In step 3(b) A receives viewi, ρi and the argument is the
same as in step 1(a). The only way a corrupt sender can frame an honest receiver is by
producing some incriminating view but that only happens with negligible probability
due to the security of the signature scheme.

Finally, we also consider the outputs of F IA
HCom seen by the environment. In case of

abort, we already argued above that a corrupt party will always be identified. For the non-
abort outputs of F IA

HCom, we rely on the online extractability property, which guarantees
that the inputs to F IA

HCom sent by S (from the extractor tape) are indistinguishable from
those in the original simulation of Π, for FHCom. Therefore, the non-aborting outputs of
F IA

HCom are distributed the same as those in the original simulation, and indistinguishable
from the real world.

79

6. MPC with Identifiable Abort

The adversary A corrupts only a subset of receivers (Case 2).

The simulation proceeds as follows.

1. S receives the random tapes that A picked.

2. S samples and broadcasts (pkH, skH) for the honest parties and receives the corre-
sponding pkA from A.

3. S runs the simulator SΠ:

a) Whenever SΠ sends messages to FHCom, S forwards these messages to F IA
HCom

for all the relevant commands.
b) When S receives (mr

i,S , σ
r
i,S) it verifies the signature and if the check fails, it

broadcasts (Complain, Pi). If the check passes S sends (mr
i,S) to SΠ.

4. A either broadcasts (mr
i,S , σ

r
i,S) or sends nothing.

5. S sends (Abort, Pi) to F IA
HCom and aborts.

Abort. Depending on which party aborted during the execution of SΠ, S takes care of
each case as follows.

1. Abort by an honest receiver Pi:
- This will never happen since the sender is honest so we can ignore it.

2. Abort by a corrupt receiver Pj :
a) S receives (abort, viewi, ρi) from A for some Pi.
b) S will run VerifyAbort (pki, viewi, ρi) to establish if Pi cheated. This is not

really necessary.
c) S will send (Abort, Pi) to F IA

HCom and abort.

3. Abort by an honest sender PS :
a) S broadcasts abort.

b) A sends ṽiewj and the opening to the random tape ρj for all corrupt parties
Pj or sends nothing (in which case S launches a complaint and the views need
to be broadcast). If A doesn’t broadcast these for some party Pi, then S sends
aborti to the functionality.

c) S runs IA.Identify
(
pkj , viewj , ρj , pkS , viewS,j

)
for all corrupt parties Pj to

establish who cheated.
d) S broadcasts (viewS,j , viewj , ρj) for the particular Pj who cheated.
e) S sends (Abort, Pj) to F IA

HCom and aborts.

80

6.5. Compiling to Identifiable Abort

We will now prove why A cannot distinguish if it is interacting with ΠIA or the simulator
S equipped with F IA.

In step 1, in both worlds A chooses and broadcasts its own random tapes. In step 2 in
both worlds A receives public keys for the honest parties and broadcasts the keys that it
picked. In step 3(b), we know that SΠ is a good simulator for Π so the view it simulates
is indistinguishable from the real world.

In the abort phase we have three cases. In 2(c) S aborts with the same probability as
in the real world. In step 3(d) S broadcasts (viewS,j , viewj , ρj). S can reproduce viewS,j

because it consists only of messages received from A.

6.5.2. Identifiable Cheating
We now present another transformation, which does not directly yield identifiable abort,
but on the other hand, is not restricted to sender-receiver protocols. Similarly to the
previous compiler, we use signatures to verify point-to-point communication. This ensures
that a protocol transcript is verifiable, in the sense that, in an execution where an honest
party aborts, a cheater can be identified given the views of all parties, even if a corrupt
party may lie about its view. We will use this transformation as part of our preprocessing
protocol in Section 6.6, to ensure that the triple generation subprotocol can be verified
in case of an abort.

Protocol assumptions.

We let NextMsg denote a component of each party’s state transition function that, on
input the party identifier Pi, random tape ρi, the view of Pi, and round r, outputs the
next message m that Pi is supposed to send. We assume that the protocol Π realizes a
functionality F, and is in the (FCRS,FRand)-hybrid model.

Definition 6.8 (Dishonest execution). Consider a non-aborting execution of protocol Π
between parties P1, . . . , Pn wit h random tapes (ρ1, . . . , ρn), and a set PA of corrupted
parties. We say that the execution was dishonest with respect to PA, if there exists at
least one honest party whose view in the execution is different compared to the view of
the same party in an honest execution of Π on (ρ1, . . . , ρn).

The notion is defined via a game and a polynomial time algorithm Identify. The idea
of the definition is as follows, we first run the protocol Π with a set of parties P1, . . . , Pn.
The protocol generates the set of views {viewi}i∈[1,n]. The adversary is allowed to replace
up to n− 1 views with corrupted ones. We show that the identifiable cheating compiler
guarantees that, except with negligible probability, given all the views, the random
tapes of the parties, and public keys of all the parties, the Identify algorithm successfully
identifies the cheating party. Formally, the definitions are as follows:

Definition 6.9 (Identifiable cheating). Let Π be an actively secure protocol that UC-
securely realises F and in the FCRS-hybrid model. Let Identify be a deterministic
polynomial-time algorithm with the syntax:

81

6. MPC with Identifiable Abort

Compiler ΠIC
Cmp

Let Π be a maliciously secure protocol with abort that realizes F and is in the
(FCRS,FRand)-hybrid model. Let (Gen,Sig,Ver) be a signature scheme.

1. Each Pi, for i ∈ [1, n], samples (pki, ski)← Gen(1λ) and broadcasts pki.

2. The parties run Π. Let ρi be the random tape of each party Pi. When Pi

receives a message, inp, in round r:
a) If inp is a message from Pj of the form (m,σ), Pi checks that

Ver(pkj , σ, (Pj∥Pi∥m∥r−1) = 1. If the check fails, run Complain(Pi, Pj).
b) If Pi is next instructed to send a message to some party Pj :

i. Let (mi,j , state) = NextMsg(Pi, ρi, viewi, r).
ii. Let σi,j = Sig(ski, Pi||Pj ||mi,j∥r)
iii. Send (mi,j , σi,j) to Pj

Otherwise, Pi executes its next instruction as usual.

Figure 6.11.: Compiler for identifiable cheating

Algorithm Identify
(
(pki, viewi, ρi)i∈[1,n]

)
1. Emulate an execution of Π with virtual parties P1, . . . , Pn and random tapes
ρ1, . . . , ρn.

2. At each step where Pi sends a message mi,j to Pj in round r:
a) Retrieve the next message (m̂i,j , σ) from viewj .
b) Check whether mi,j = m̂i,j , where mi,j = NextMsg(Pi, ρi, viewi, r). If

not, output Pi as a cheater. If mi,j = m̂i,j , check if there was a Complain
procedure initiated in the list of broadcasted messages. If there was
one, output Pj as a cheater.

c) Check whether Ver(pki, σ, (Pi∥Pj∥m̂i,j∥r)) = 1. If not, output Pj as a
cheater.

3. If Π ends successfully without identifying a cheater, output ⊥.

Figure 6.12.: Algorithm for identifying a cheater.

82

6.5. Compiling to Identifiable Abort

Experiment Expic
A,Π(λ)

1. A corrupts a set of parties PA ⊂ P. Let PH be the set of honest parties.

2. For each i ∈ PH , sample a random tape ρi.

3. For each j ∈ PA, A chooses a random tape ρj .

4. The parties run Π, where Pi uses ρi as its random tape. Let viewi denote
the list of messages received by Pi.

5. If all honest parties output abortj for some j ∈ PA, then output 0.

6. A receives (ρi, viewi), for i ∈ PH .

7. A outputs {ṽiewj} for j ∈ PA. Redefine viewj := ṽiewj .

8. Output 1 if one of the following holds:
• The execution of Π is dishonest with respect to PA, and

Identify
(
(pki, ρi, viewi)n

i=1
)

= ⊥
• Identify

(
(pki, ρi, viewi)n

i=1
)
∈ {Pi}i∈PH

.
Else, output 0.

Figure 6.13.: Experiment for Identifiable Cheating

- Identify
(
(pki, ρi, viewi)i∈[n]

)
: On input the public keys, random tapes and views of

all the parties, Identify either outputs a corrupt party Pi or an honest execution
symbol ⊥.

A protocol Π supports identifiable cheating if for any P.P.T adversary A it holds that:

Pr[Expic
A,Π(λ) = 1] ≤ v(λ)

where λ ∈ N, v is a negligible function and Expic
A,Π(λ) is defined as in Figure 6.13.

The idea of our compiler ΠIC
Cmp that ensures identifiable cheating is to have parties add

signatures to their messages. In order for parties to sign and verify messages, each party
chooses a public key and a secret key for a signature scheme, and broadcasts the public
key before running the compiled protocol. If a party in the protocol thinks a message or
the signature it received is invalid, it broadcasts a complaint message, upon which the
sender of the message must broadcast the message and the signature to all the parties.
The formal protocol for the identifiable cheating compiler appears in Figure 6.11.

We prove that using this compiler with any protocol that is actively secure in the
dishonest majority with abort, gives a protocol that has the identifiable cheating property.

83

6. MPC with Identifiable Abort

Theorem 6.8. Let Π be a protocol that UC-securely realises a functionality F with active
security and dishonest majority. Let (Gen,Sig,Ver) be a EUF-CMA secure signature
scheme. Then the compiled protocol ΠCmp securely realises F with active security in the
CRS model and using broadcast, and achieves the identifiable cheating property.

Proof. UC-Security: If Π has any calls to hybrid functionalities, they are replaced with
the corresponding protocols in the CRS model. This is allowed according to the UC
theorem, so it does not break security. The transformed protocol securely realises F in
the CRS model. The simulator S for a static adversary A corrupting up to n− 1 parties
works as follows:

1. S emulates the CRS by picking it according to the simulator for Π and sends it to
the adversary.

2. S records pk from A, picks keys on behalf of the honest parties, and sends the
public keys to A.

3. Assume that Pi was supposed to send a message to Pj in a given round of the
protocol. There can be three different kinds of communication between parties
Pi, Pj :

a) Pi is corrupt, but not Pj : S receives a message and the corresponding signature
from A. If the signature does not verify, S asks A to broadcast the signature.
If A does not broadcast the signature, or if it does and the signature it
broadcasted does not verify, parties abort with aborti.

b) Pi is honest, and Pj is corrupt: S runs the simulator for Π to get the message
m that Pi was supposed to send in the current round. S signs m under the
keys it picked for Pi. It sends m, Sig(m) to the receiver Pj and waits for a
response from A. It forwards A’s response to the functionality F.

c) Both parties are corrupt: This case is trivial to simulate.

4. Whenever S is supposed to send a message to the functionality, it does whatever
the simulator for Π does to compute the message to be sent and forwards it to the
functionality.

Indistinguishability is straightforward to argue as the protocol messages of Π which
the adversary sees (and the messages to F) are identically distributed as in the regular
simulation. In order to distinguish between the ideal world and the real world, one must
therefore break UC security of the underlying protocol. Identifiable cheating: Consider
an adversary A who wins the experiment Expic

A,Π(λ) with some non-negligible probability.
The adversary can win in one of two ways. The first is when the adversary corrupts some
party and misbehaves, but Identify does not output any party as corrupt. The second
is when the adversary manages to make Identify output an honest party, say Pj , as the
corrupt party.

Assume it wins due to the first scenario. In this case, no parties are in conflict, meaning
that none of the honest parties broadcasted a complain message and the Identify algorithm

84

6.6. Preprocessing

did not identify any party as misbehaving. Let the message that the adversary incorrectly
generated be m̃l

i,j (according to ρi), and m̃l
i,j ̸= ml

i,j . However, Identify always identifies a
party Pi as cheater if it produces an inconsistent message. Therefore, it is a contradiction
that the adversary can misbehave with an inconsistent message and not get caught by
Identify.

The other case can only happen if A has forged a signature of some honest party.
Assume that Pi was identified as the cheater in round l. Since round l was when the
party Pi was identified, all the messages until round l − 1 should have been consistent.
This means the messages Pi sent in round l will be correct and have signatures on
(Pi||Pj ||ml

i,j ||l). If A can instead produce a valid signature on (Pi||Pj ||m̃l
i,j ||l) with

m̃l
i,j ̸= ml

i,j then a successful A can directly be used to construct an attacker on the
EUF-CMA property of the signature scheme with a loss factor n in success probability as
the reduction has to guess which simulated honest party to use to embed the challenge
pk in.

6.6. Preprocessing
In this section, we build our preprocessing protocol with identifiable abort, using the
homomorphic commitments with identifiable abort from the previous section. The
preprocessing protocol allows parties to secret-share random values such that the secret
is known to one party only, as well as to create sharings of multiplication triples, that is,
two random values together with a sharing of their product. In both cases, all shares are
homomorphically committed. Parties can also apply linear operations to these sharings
without interaction, or open them with identifiable abort. The preprocessing functionality,
abstracting this, is formally described in Figure 6.14.

In the preprocessing protocol ΠIA
Prep, we will use (amongst other functionalities) n

sessions of F IA
HCom, where we denote by F IA,i

HCom the session where party Pi is sender and
all other parties are receivers, and refer to this as Pi’s session of F IA

HCom. We use the
notation ⟨·⟩C to denote values that are additively shared and where each party Pi’s
share is committed using F IA,i

HCom where it is the sender. For a value ⟨x⟩C , each party Pi

holds (xi, id1, . . . , idn), where idi is the identifier where F IA,i
HCom stores the share xi. Any

linear operation performed on ⟨x⟩ can also be performed on the commitments, by calling
LinComb with each F IA

HCom session. To open ⟨x⟩C , each Pi calls F IA,i
HCom with (Output, idi),

for i ∈ [1, n], and all receivers now either receive x or (Abort,J), where J indicates the
set of cheating parties. [x] denotes that x ∈ Fp is additively shared between the parties,
that is, x = x1 + . . .+ xn where Pi holds xi.

The preprocessing protocol is described in Figure 6.16 and Figure 6.17. To generate
a random input towards a party, say Pi, each Pj generates a private random value,
committed using F IA,j

HCom, and then privately opens this to Pi. Pi sets its random input to
be the sum of all the random values it receives across the n sessions of F IA

HCom. Since the
parties only use F IA

HCom functionalities here, cheater identification is trivial.
To generate triples, we rely on a secure-with-abort triple generation protocol, ΠTrip,

that securely realizes the FTriple functionality (Figure 6.15); this can be efficiently re-

85

6. MPC with Identifiable Abort

Functionality F IA
Prep

Parameters: Finite field Fp, parties P1, . . . , Pn. The adversary is allowed to
corrupt a subset of parties, denoted by I.

Random Input: On receiving (RandInput, Pi, l) for some i ∈ [1, n] from all parties:

1. Sample r ← Fl
p.

2. Store (idr, r) for a fresh idr and send (idr, r) to Pi and idr to everyone else.

Linear Operation: On receiving (LinComb, idz, idx, idy, α, β, γ) from every Pi

where idx, idy are assigned, idz is unassigned and where α, β, γ ∈ Fp, compute
z = α · x+ β · y + γ and store (idz, z).

Triple Generation: On receiving (TripGen, l) from all parties:

1. Sample a, b ∈ Fp of length l and let c = a⊙ b.

2. Store (ida,a), (idb, b), (idc, c) for unused ida, idb, idc.

3. Send (ida, idb, idc) to all parties.

Output: Upon receiving (Output, idx) from all parties and where idx is assigned:

1. Send x to A.

2. If A sends (Abort,J), where J ⊆ I,J ≠ ∅, then send (Abort,J) to all the
parties and terminate.

3. If A sends Deliver then output x to all parties.

Corrupt Party Behaviour: Whenever the adversary is supposed to send a value,
it can choose to not send a value at all, triggering an abort. The functionality
receives (Abort,J), where J ⊆ I from A and J ≠ ∅, sends it to all the parties
and terminates.

Figure 6.14.: Functionality for Preprocessing

86

6.6. Preprocessing

Functionality FTriple

Parameters: Finite field Fp. Parties P1, . . . , Pn. The adversary is allowed to
corrupt a subset of parties, denoted by I. Denote the honest parties as PH .

Generate Triples: On receiving (Trip, l) from all the parties, sample a fresh set
of l triples (aj , bj , cj) ∈ F3

p for j ∈ [1, l]. Output additive shares [aj], [bj], [cj] of the
triple to each party.

Corrupt Parties: The adversary is allowed to choose its shares of the triples, as
well as additive errors for the triples. If the errors are δi

a, δ
i
b for i ∈ PH for a triple,

the triple will now be computed as c = a · b+ Σi∈PH

(
ai · δi

b + bi · δi
a

)
.

Figure 6.15.: Functionality for unauthenticated triples

alized, for instance, using pairwise OLE correlations as in the preprocessing protocol
of Le Mans [RS22]. We then compile ΠTrip to support identifiable cheating, using our
compiler from Figure 6.11, to obtain a protocol ΠIC

Trip.
After running ΠIC

Trip, each party gets unauthenticated shares of a batch of triples.
These triples are then authenticated, by having parties commit to their shares using the
respective sessions of F IA

HCom, and then checked for correctness, using random challenges
and a standard triple sacrifice protocol.

Notice that there can two types of errors when creating triples. Firstly, the triple
generation protocol ΠIC

Trip might abort. The other kind of error is when ΠIC
Trip results

in consistent shares of triples, but the adversary inputs inconsistent shares into F IA
HCom.

This would lead to the triple sacrifice failing. If there is an abort in ΠIC
Trip, parties open

their random tapes using FCommit and broadcast their views from ΠIC
Trip. Since ΠIC

Trip
has identifiable cheating, parties can now run the Identify algorithm locally on input
(pki, viewi, ρi)n

i=1 to identify a corrupt party. If there is an abort in the sacrifice check,
on the other hand, in addition to running Identify, they also need to check consistency
of the inputs to F IA

HCom to outputs of ΠIC
Trip. In order to do this, they call F IA

HCom with
Output across all sessions of F IA

HCom and check that the inputs to F IA
HCom match with the

outputs of ΠIC
Trip. Here, any deviation allows to directly identify a cheater.

Theorem 6.9. Suppose that a perfectly correct protocol ΠTrip UC-securely implements
FTriple against an active adversary corrupting at most n− 1 parties.

Then, the protocol ΠIA
Prep (using the compiled protocol ΠIC

Trip) UC-securely implements
the functionality F IA

Prep in the presence of a malicious adversary that statically corrupts
up to n− 1 parties, in the (FRand,F IA

HCom,FCommit)-hybrid model.

In the proof, we construct a simulator S which simulates honest parties and the ideal
functionalities towards the adversary. For Random Input S just runs the protocol,
except for a malicious receiver Pi where S equivocates an honest party’s commitment

87

6. MPC with Identifiable Abort

Protocol ΠIA
Prep (Part 1)

Parameters: Finite field Fp. Parties P1, . . . , Pn.

Initialize: Each Pi samples a random tape Rndi. Pi sends (Commit, Pi,Rndi)
while every other party receives Pi from FCommit. Parties repeat this pro-
cess with every Pi committing to its random tape. Parties also run the first
step of the compiled ΠIC

Trip and each party obtains the verification keys pk1, . . . , pkn.

Random Input: Pi uses the next available random input sharing idi. If it has no
random inputs left, generate a batch of l as follows:

1. Each Pj calls F IA,j
HCom with (Random, idj , l), while the other parties call F IA,j

HCom
acting as receivers. Pj receives rj of length l.

2. Each Pj then calls each instance of F IA
HCom with (PrivOpen, idj, Pi). Pi receives

rj for j ∈ [1, n] and sets its random input as xi = Σn
j=1rj . It considers the

value of idi as the first unused element of xi.

Linear Operation: To compute z = α · x + β · y + γ, parties set
⟨z⟩C = α · ⟨x⟩C + β · ⟨y⟩C + γ.

Output: To output a value ⟨x⟩C , each party calls all instances of F IA
HCom with

(Output, idx).

Figure 6.16.: Protocol for preprocessing

88

6.6. Preprocessing

Protocol ΠIA
Prep (Part 2)

Triple Generation:

1. Parties run ΠIC
Trip using the random tapes Rndi for Pi. They receive additive

shares of 2l triples – [aj], [bj], [cj], for j ∈ [1, 2l]. If any party notices an abort
while running ΠIC

Trip, then it broadcasts Abort and all parties go to Abort 1.

2. Each Pi calls F IA,i
HCom, where it acts as the sender, with(

Input, ida-j , idb-j , idc-j , [aj], [bj], [cj]
)

for j ∈ [1, 2l]. Using the identifiers,
parties form ⟨a⟩C , ⟨b⟩C , ⟨c⟩C .

3. Parties call FRand to receive public random values t ∈ (F∗p)l and a set of random
combiners χ1, . . . , χl ∈ Fp.

4. For i = 1, . . . , l, the parties do the following (in parallel):
a) For iteration i, parties select a pair of previously unused triples

(⟨a⟩C , ⟨b⟩C , ⟨c⟩C), (⟨a′⟩C , ⟨b′⟩C , ⟨c′⟩C).
b) Compute ⟨α⟩C = ⟨ti · a+ a′⟩C and ⟨β⟩C = ⟨b+ b′⟩C . Open these values using

the Output command of each instance of F IA
HCom. If any F IA

HCom instance sends
(Abort,J), parties abort with J being the set of cheating parties.

c) Locally compute ⟨di⟩C = ti · ⟨c⟩C − ⟨c′⟩C + α · ⟨b⟩C + β⟨a′⟩C − α · β.

5. Compute ⟨σ⟩C = ∑l
i=1 χi · ⟨di⟩C .

6. Open σ by calling each F IA
HCom with Output. If σ = 0, accept all ⟨a⟩C , ⟨b⟩C , ⟨c⟩C

as good triples and discard all ⟨a′⟩C , ⟨b′⟩C , ⟨c′⟩C . If σ ̸= 0, parties abort and go to
Abort 2.

Abort 1: If there is an abort in ΠIC
Trip in Step 1 of the Triple Generation,

1. Each Pi opens its commitment to Rndi to everyone, by sending Open to FCommit.
2. Each Pi broadcasts viewi from ΠIC

Trip. Then each party runs
Identify((pki, viewi, ρi)i∈[n]) and output as cheater whatever the algorithm out-
puts.

Abort 2: If there is an abort in the triple sacrifice in Step 4, parties first run the
same as in Abort 1, and in addition, parties call all instances of F IA

HCom with
Output to open their triple shares. Parties check that the inputs of each Pi to
F IA,i

HCom matched the triple shares Pi obtained as outputs from ΠIC
Trip. If not, parties

output (Abort,J), where J is the set of parties with inconsistent inputs to that
instance of F IA

HCom.

Abort 3: If there is an abort in FRand or any instance of F IA
HCom, all parties abort

with (Abort,J) received from the respective functionality.

Figure 6.17.: Protocol for preprocessing (Triple Generation)

89

6. MPC with Identifiable Abort

in F IA
HCom to open to the output provided F IA

Prep. For Output, it does exactly the same.
Linear Operation is entirely local, so simulation is trivial. For Triple Generation S
runs the protocol, but will always abort if the F IA

HCom sessions contain values that are not
consistent multiplication triples.

To show that S’s output can only be distinguished from ΠIA
Prep with the given probability,

the main difference lies in the occurrence of aborts and the identified cheaters. The
1/(p−1) term comes from aborts that also happen in S if d = 0 (while the protocol never
aborts). Concerning identified cheaters, we have that Identify identifies no or an honest
party (i.e. the wrong party) with probability at most negl(λ) due to the Identifiable
Cheating property of ΠTrip, while S always identifies corrupt dishonest parties.

Proof. We construct a PPT simulator S that runs the adversary A as a subroutine, and is
given access to F IA

Prep. It internally emulates the functionalities FRand,F IA,1
HCom, . . . ,F

IA,n
HCom,

FCommit and we implicitly assume that it passes all communication between A and the
environment Z.

Parties controlled by the adversary are indicated by PA and the honest parties are
denoted by PH .

For simplicity, we specify behavior as if the adversary uses F IA
HCom,FCommit or FRand

truthfully as specified in the protocol. If any of the functionalities abort, or a dishonest
party does not send a command in a round to a functionality as it was supposed in the
protocol, then the simulator will simply collect the sets of corrupted parties that are
identified by the hybrid functionalities as J and immediately send (Abort,J) to F IA

Prep as
parties would do in Abort 3 of the protocol.

Initialize: A chooses its random tape ρi for each dishonest party Pi ∈ PA and sends
them to FCommit which is emulated by S. For each honest party Pi ∈ PH , the simulator
emulates making a commitment via FCommit to A.

Random Input: Let Pi be the party to receive l inputs. If Pi ∈ PH then the
simulator just emulates running the protocol and sends (RandInput, Pi, l) in the name of
each dishonest party Pj to F IA

Prep whenever A sends PrivOpen to the respective F IA,j
HCom .

If Pi is dishonest:

1. For every Pj ∈ PA that sends (Random, idr, l) to F IA,j
HCom send (RandInput, Pi, l) in

its name to F IA
Prep and note the committed value as rj . For every honest party

Pj ∈ PH , simulate committing to these values via each simulated session of F IA,j
HCom

for a randomly chosen rj .

2. Let Pj∗ be a designated honest party. Once S obtains (idr, r) from F IA
Prep the

simulator emulates opening the random value rj to Pi by F IA,j
HCom of any honest

Pj ̸= Pj∗ with (PrivOpen, idr). For Pj∗, it instead lets F IA,j∗
HCom send the value

δ = r −
∑

j∈[n],j ̸=j∗ rj to Pi.

Linear Operation: These are a local operations so they need not be simulated.

90

6.6. Preprocessing

Triple Generation:

1. S runs ΠIC
Trip, which is secure with identifiable cheating, by picking dummy random

tapes for each Pi ∈ PH . If an abort occurs in ΠIC
Trip, the simulator opens its

commitment to the honest parties’ random tapes and receives the opening from A
for its tapes. Then, S sends {viewi}i∈PH

for each honest party to A and receives
{viewi}i∈PA for all the parties A controls. It runs the Identify algorithm with
input (pk1, . . . , pkn, ρ2, . . . , ρn, view1, . . . , viewn). If Identify only identifies dishonest
parties J , then S sends (Abort,J) to F IA

Prep and terminates. If Identify outputs ⊥
or also an honest party, then S sends (Abort,PA) to F IA

Prep and terminates.

2. S emulates each session of F IA
HCom by receiving A’s shares of the triples it obtains

from ΠIC
Trip and storing them, and also consistently inputting its own shares into

F IA
HCom sessions consistent with the outputs it obtained from ΠIC

Trip.

3. S emulates FRand by picking a random value t and random combiners χ1, . . . , χl,
and sending them to A.

4. S receives commands to each F IA
HCom from A needed to compute ⟨t · a− a′⟩C and

⟨b − b′⟩C for each triple. It honestly computes the corresponding shares for the
honest parties. S then opens its shares via Output to A to open t · a− a′ and b− b′
and waits for A to open its shares.

5. S honestly computes ⟨σ⟩C for the honest parties and sends the shares to A via the
opening of F IA

HCom. It receives A’s shares of ⟨σ⟩C and checks if σ = 0.

a) If d = 0 and all multiplication triples are consistent, then S sends (TripGen, l)
in the name of each dishonest party to F IA

Prep.
b) If d = 0 but there are inconsistent multiplication triples committed to, then S

simply sends (Abort,PA) to F IA
Prep and aborts.

c) If d ̸= 0, S broadcasts an Abort, opens the honest parties’ random tape
commitments as well as all triple shares it has committed to via F IA

HCom. Then,
it waits to receive A’s openings of its random tape commitments and triple
share commitments via F IA

HCom. S then broadcasts {viewi}i∈PH
and waits for

the A’s views {viewi}i∈PA . Using all the views and the random tapes, S
can now run the Identify algorithm as in the protocol. As above, if Identify
identifies dishonest parties J , then S sends (Abort,J) to F IA

Prep and terminates.
If Identify outputs ⊥ or also an honest party, then S sends (Abort,PA) to
F IA

Prep and terminates. If no cheaters are detected in ΠIC
Trip, S checks if the

ΠIC
Trip output shares that A opened via F IA

HCom are consistent with the shares
ΠIC

Trip generated. If S then identifies parties where these are different, then it
sends (Abort,J) to F IA

Prep, where J is the set of parties with inconsistent triple
commitments. If no such party could be identified, then S sends (Abort,PA)
to F IA

Prep.

91

6. MPC with Identifiable Abort

Output: On receiving (Output, idx) from Pi ∈ PA to F IA,i
HCom, the simulator forwards

the message to F IA
Prep, from which it gets the value x. S knows A’s shares of the output as

they are committed in F IA,i
HCom, so it picks shares for one honest party Pj∗ (as in the input

phase) such that they add up to x and makes F IA,j∗
HCom output the correct share to PA.

Indistinguishability: We argue that no computationally bounded environment can
distinguish between the real world and ideal world executions, except with probability
1/p+ negl(λ).

For all operations except Triple Generation, it is trivial to see that simulation
and real protocol are perfectly indistinguishable in its abort behavior and in terms of
consistency as S does the same as Abort 3 and each hybrid functionality only identifies
dishonest parties as cheaters. We can therefore focus on Triple Generation.

First we look at the part running ΠIC
Trip or where it may abort. In the ideal world, if we

have an abort during ΠIC
Trip then the simulator will always abort with dishonest parties

only. In the real world, the algorithm Identify may identify no cheater at all or even an
honest party. But since ΠIC

Trip has the identifiable cheating property, by Definition 6.9
this can only occur with probability negl(λ).

In the ideal world, the simulation of the triple check always aborts if a committed
triple is incorrect (i.e. even if d = 0). In the real protocol, this may not be the case. By a
standard argument (see e.g. [LN17. Lemma 3.5]), the probability of this event happening
to allow distinguishability is 1/(p− 1).

Next, consider the case where d ̸= 0 and the triple check turns to cheater identification.
There, if Identify identifies an honest party then this is distinguishable between real
and ideal world as S always aborts in the ideal world, but this can happen with only
with probability negl(λ). The other abort that can happen is if no cheater is identified
from running Identify on ΠIC

Trip and from the opening of all F IA
HCom sessions, i.e. each

party consistently committed to the outputs of ΠIC
Trip, but these did not form consistent

multiplication triples. In this case, S always aborts with PA in the ideal world. In the
real world, since ΠIC

Trip UC-securely implements FTriple, and each party acted honestly
during ΠIC

Trip (except with probability negl(λ) as otherwise Identify would have identified
the party deviating from the protocol as having cheated by the Identifiable Cheating of
ΠIC

Trip), the outputs of ΠIC
Trip in case of no abort must be valid multiplication triples except

with probability negl(λ) by assumption.

92

7. MPC with Friends and Foes

7.1. Introduction
A set of n mutually distrusting parties who have secrets x1, . . . , xn can use secure multi-
party computation (MPC) [BGW88; Yao86] to compute a joint function f(x1, . . . , xn) of
their secrets, without revealing anything more about those secrets to one another. MPC
is typically parametrized by a threshold t such that as long as t or fewer participants
collude, they cannot subvert the privacy and correctness guarantees of the computation.
However, if t parties deviate from the protocol, no guarantees are made about what the
remaining n− t parties learn. Many MPC protocols (such as [IKP10; IKKP15; PR18])
make use of this by relying on fall-back protocols where, in the event of cheating, if
one or more parties are identified as definitely not being one of the t cheaters, they are
entrusted with the others’ secrets.

Of course, this is not what we would like to use in practice. We would like even our
honest peers — who do not collude with some central malicious adversary — not to learn
our secrets. Alon et al. [AOP20] introduce MPC with Friends and Foes (or MPC with
FaF security), which captures exactly this guarantee. Informally, a protocol achieves
(t, h∗)-FaF security if, as in the standard definition of MPC, for any (non-uniform)
adversary A there exists a simulator SA which produces a view indistinguishable from
that of the t corrupt parties without seeing the inputs of the honest parties. However, for
FaF security, there must additionally exist a simulator SAH∗ for every subset of up to h∗
of the honest parties which produces a view indistinguishable from that of those honest
parties, without seeing the inputs of the remaining honest parties. This implies that no
matter what messages the corrupt parties send, they can not cause any h∗ honest parties
to learn more about their peers’ inputs than they should.

Alon et al. define two degrees of FaF security:

Weak FaF. Here, though the output of SA must be indistinguishable from the real
view of the t corrupt parties and the output of SAH∗ must be indistinguishable
from the real view of the h∗ honest parties, taken together, those views may be
distinguishable from the set of real views. (That is, the simulated views may not
be mutually consistent.)

Strong FaF. Here, the outputs of SA and SAH∗ must be jointly indistinguishable from
the real views of the t corrupt parties and h∗ honest parties.

One can think of strong FaF as modeling the case where the adversary receives some
feedback about what the honest parties learned, and weak FaF as modeling the case
where there is no such feedback.

93

7. MPC with Friends and Foes

7.1.1. Prior Work

Alon et al. showed some inherent limitations on MPC with FaF security (Section 7.1.1),
and gave some initial constructions (Section 7.1.1). Their results primarily focus on the
notion of guaranteed output delivery (GOD) where corrupt parties cannot prevent the
honest parties from obtaining the output.

Limitations

Alon et al. consider two parameters of MPC protocols: number of rounds, and thresholds.
They showed that two-round MPC with weak FaF security (and thus also strong FaF
security) and GOD is impossible even for the lowest possible thresholds (t = h∗ = 1); so,
three rounds is the best we could hope to achieve. They then showed that even weak
FaF security (and thus also strong FaF security) is unachievable for certain thresholds
irrespective of the number of rounds. In particular, let n be the number of participants, t
the bound on the number of corrupt parties, and h∗ the bound on the number of honest
parties who should learn nothing about other honest parties’ secrets. Alon et al. show
the following:

• Weak FaF secure MPC with GOD is impossible when 2t+ h∗ ≥ n.

• Information theoretic (statistical) weak FaF secure MPC with GOD is impossible
if:

– 2t+ 2h∗ ≥ n (even if broadcast is available).
– 2t+ 2h∗ ≥ n or 3t ≥ n (when broadcast is not available).

• Information theoretic (perfect) weak FaF secure MPC with GOD is impossible
(even when broadcast is available) when 3t+ 2h∗ ≥ n.

Constructions

Alon et al. give several initial constructions of FaF secure MPC with GOD. They describe
a round-optimal (three-round) construction that achieves strong FaF security, but only
for 5t + 3h∗ < n. They also describe a threshold-optimal (2t + h∗ < n) construction
that only achieves weak FaF security. Finally, they show several information theoretic
constructions. We summarize all of the constructions in Figure 7.1.

7.1.2. Related Work

Exploring the potential of FaF security belongs in the general area of exploring the
robustness of different security models. Robustness is a highly desirable feature because
it removes a potential denial of service threat and supports user participation. Towards
this goal there is work that has been done by Koti et al. [KPPS21] which proposes a
robust Privacy Preserving Machine Learning (PPML) framework for a variety of machine
learning tasks, Dalskov et al. [DEK21] in which the authors introduce a novel four-party

94

7.1. Introduction

Construction FaF Level Security Threshold Rounds Assumptions Preprocessing
[AOP20]

GMW-based Weak Comp 2t + h∗ < n poly(κ) OT & OWP no
DI-based Strong Comp 5t + 3h∗ < n 3 PRG no

BGW-based Strong Stat IT 2t + 2h∗ < n poly(κ) Broadcast no
BGW-based Strong Perf IT 3t + 2h∗ < n poly(κ) None no

This Work

TFHE-FaF Weak Comp 2t + h∗ < n 3 Lattices &
Broadcast no

BGW-BT-Comp Strong Comp 2t + h∗ < n O(κ) ETP Beaver
triples

Figure 7.1.: Our constructions compared to those of [AOP20]. Notation: n denotes the total
number of participants, t denotes the bound on the number of corruptions (foes), h∗

denotes the bound on the number of honest parties against whom we want privacy
(friends), and κ denotes the multiplicative depth of the circuit being evaluated.

honest-majority MPC protocol with active security which has guaranteed output delivery
(with some extensions to their main protocol), and [KPRS21] where the authors introduce
a robust actively secure 4-party protocol for secure training and inference.

Exploring FaF security is a relatively new endeavour and the following works concurrent
to ours have shown some promising results. In [KKPG22], Koti et al. show a concretely
efficient (1,1)-FaF secure 5PC protocol and in [HKKPPP22] Hedge et al. prove the
necessity of semi-honest oblivious transfer for FaF-secure protocols with optimal resiliency
and they show a ring-based 4PC protocol, which achieves fairness and GOD in the case
of optimal corruptions: 1 semi-honest and 1 malicious adversaries.

7.1.3. Our Contributions

In this paper, we close two of the gaps left open by the constructions of Alon et al.. We
also extend the study of how FaF security relates to other security notions. The focus of
our work is FaF security with GOD.

First, we give a three-round construction that achieves weak FaF security for 2t+h∗ < n
in the CRS (common reference string) model. This is the first construction that is optimal
both in terms of the number of rounds and in terms of the threshold (even though it does
not achieve the stronger notion of FaF). Second, we give a construction that achieves
strong FaF security for 2t+ h∗ < n. This is the first strong FaF construction to achieve
the optimal threshold (though the number of rounds depends on the multiplicative depth
of the function being computed). A caveat of our second construction is that it relies on
correlated randomness.

Finally, we further the study of the relationship between FaF security and other related
notions of security. Recalling the standard notions, while actively corrupt parties are
completely controlled by the adversary and may deviate arbitrarily from the protocol;
passively corrupt parties follow the protocol steps but leak their internal states to the
adversary. Alon et al. showed that Mixed Adversary security (where the adversary
can make t active corruptions and h∗ passive ones) does not imply FaF security in the
computational setting. We show the other direction; that FaF security does not imply

95

7. MPC with Friends and Foes

mixed adversary security. We additionally consider Best of Both Worlds (BoBW) security
[IKLP06; Kat07] (where the adversary can either make t active corruptions or t + h∗

passive ones, but not both). We show that FaF security does not imply BoBW security,
and vice versa. These results are summarized in Figure 7.2.

Technical Overview

Three-Round Weak FaF Construction Our three-round construction is based on
decentralized threshold FHE (described in Section 7.4), and follows the blueprint of
Gordon et al. [GLS15]. In the first round, the participants exchange public keys. They
then encrypt their inputs to the set of all participants’ public keys, and broadcast the
resulting ciphertexts in the second round. Once they receive one another’s ciphetexts,
they perform the homomorphic computation of the function locally, and broadcast their
individual partial decryptions in the third round. Everyone is then able to locally
combine these partial decryptions and obtain the output. Gordon et al. show that this
construction achieves guaranteed output delivery in the presence of a dishonest minority.
We show that it has weak FaF security as long as 2t+ h∗ < n.

Strong FaF Construction Our strong FaF construction is based on BGW [BGW88]. We
proceed in three steps; first, we show that BGW with Beaver triple pre-processing [Bea92]
achieves guaranteed output delivery in the presence of an adaptive mixed adversary making
t fail-stop corruptions (where fail-stop corruptions are similar to passive corruptions,
except that the parties may additionally choose to abort at any step) and h∗ passive
corruptions, as long as 2t + h∗ < n. We then apply the compiler of Canetti et al.
[CLOS02], which relies on adaptively secure commitments and zero knowledge proofs, to
instead allow our mixed adversary to make t active corruptions and h∗ passive corruptions.
Finally, we rely on the observation of Alon et al. that adaptive security implies strong
FaF security to obtain our result.

Relation of FaF to Other Notions We consider FaF security, BoBW security and mixed
adversary security. We describe several protocols that achieve some of these notions
but not others, which, taken together with the results of Alon et al., shows that all
three notions are incomparable. In Figure 7.2 we summarize what we know about the
relationship of FaF, BoBW and mixed adversaries.

7.1.4. Organization

In Section 7.2, we recall the definitions of FaF security. In Section 7.3, we describe our
results about the relationship of FaF, BoBW and mixed adversary security. In Section 7.4,
we describe decentralized threshold fully homomorphic encryption (dTFHE), which we
use in one of our constructions. In Section 7.5 and 7.6, we describe our round optimal
weak FaF and strong FaF constructions, respectively.

96

7.2. Definitions

(t, h∗)-FaF

(t, t + h∗)-
BoBW

(t, h∗)-MA

Theor
em

1

/

T
he

or
em

2
/

Theorem
3

/

[AOP20]

/

T
heorem

5
/

Theorem
4

/

Figure 7.2.: Relationships of FaF to other notions. MA denotes security against mixed adver-
saries; BoBW denotes (active / passive) best of both worlds security.

7.1.5. Notation

We use λ to denote the security parameter. By poly(λ) we denote a polynomial function in
λ. By negl(λ) we denote a negligible function; that is, a function f such that f(λ) < 1

p(λ)
holds for any polynomial p(·) and sufficiently large λ. We denote the set {1, . . . , k} by
[k] (or, equivalently, by [1, . . . , k]).

7.2. Definitions

In this section, we recall the definitions given by Alon et al. [AOP20] of Friends and Foes
security. They consider a classical adversary A corrupting t of parties, who would like to
leak unauthorized information to some honest parties. So, we really have two separate
adversaries in this setting:

1. The adversary A who actively corrupts a subset I ⊆ [n] of the parties, meaning
that she can instruct the parties in I to arbitrarily deviate from the protocol. (A
is given auxiliary input yA.)

2. An adversary AH∗ who passively corrupts a subset H∗ ⊆ [n] \ I of the honest
parties. (AH∗ is given auxiliary input yH∗ .)

For security parameter λ, inputs x = (x1, . . . xn) and auxiliary inputs yA, yH∗ , we define
the following random variables for a real-world execution of protocol Π that computes a
function f :

OUTREAL
A,Π (1λ,x) is the output of the non-active parties (where, non-active refers to the
honest and passively corrupt parties) H = [n] \ I.

VIEWREAL
A,Π (1λ,x) is A’s view during an execution of the protocol.

97

7. MPC with Friends and Foes

VIEWREAL
A,AH∗ ,Π(1λ,x) is AH∗ ’s view during an execution of the protocol. Since A’s best
strategy in order to leak information is to send her entire view, we assume that
AH∗ ’s view includes A’s view.

We can now formalize the global view of the real world execution of Π:

REALΠ,A,AH∗
1λ,x,yA,yH∗

=
(
VIEWREAL

A,Π (1λ,x),VIEWREAL
A,AH∗ ,Π(1λ,x),OUTREAL

A,Π (1λ,x)
)

It is useful to define the following projection of the global view to the view of each of
the adversaries and the non-active parties’ output:

REALΠ,A,AH∗
1λ,x,yA,yH∗

(A) =
(
VIEWREAL

A,Π (1λ,x),OUTREAL
A,Π (1λ,x)

)
and

REALΠ,A,AH∗
1λ,x,yA,yH∗

(AH∗) =
(
VIEWREAL

A,AH∗ ,Π(1λ,x),OUTREAL
A,Π (1λ,x)

)
.

Similarly we can define the following random variables for an ideal-world execution:

OUTIDEAL
A,f (1λ,x) is the output of the non-active parties in H.

VIEWIDEAL
A,f (1λ,x) is A’s simulated view.

VIEWIDEAL
A,AH∗ ,f (1λ,x) is AH∗ ’s simulated view.

As before we can formalize the global view of the ideal world execution:

IDEALf,A,AH∗
1λ,x,yA,yH∗

=
(
VIEWIDEAL

A,f (1λ,x),VIEWIDEAL
A,AH∗ ,f (1λ,x),OUTIDEAL

A,f (1λ,x)
)

We define the following projections:

IDEALf,A,AH∗
1λ,x,yA,yH∗

(A) =
(
VIEWIDEAL

A,f (1λ,x),OUTIDEAL
A,f (1λ,x)

)
and

IDEALf,A,AH∗
1λ,x,yA,yH∗

(AH∗) =
(
VIEWIDEAL

A,AH∗ ,f (1λ,x),OUTIDEAL
A,f (1λ,x)

)
.

7.2.1. FaF Security.
We say that a protocol Π computes a functionality f with (t, h∗) -FaF security if the two
following simulators exist for any adversary A that statically corrupts at most t parties:

• A simulator SA which simulates A’s view in the real world, and

• A simulator SAH∗ which simulates the view of any subset H∗ of size at most h∗ of
the honest parties, such that when given SA’s entire state, SAH∗ can generate a
view that is indistinguishable from the real world view of H∗.

We say that SAH∗ is given the entire state of SA because in the real world, nothing
stops an adversary from sending her entire view to one (or more) honest parties.

98

7.2. Definitions

FaF Functionality with GOD In an ideal evaluation of the function f , the parties
interact with the functionality as follows:

Inputs. Each party Pi is given input xi. Adversary A is given auxiliary input yA ∈ {0, 1}∗
and xi for all i ∈ I. Adversary AH∗ is given auxiliary input yH∗ ∈ {0, 1}∗ and xi

for all i ∈ H∗.

Parties Send Input. All non-active parties (i.e. the honest and passive parties) i ∈ [n]\I
send their inputs xi to the functionality. A chooses inputs x′i for i ∈ I as the input
of each corrupt party and sends it to the functionality. For non-active parties i, we
define x′i := xi.

Computation. The functionality computes z = (z1, . . . , zn) = f(x′1, . . . , x′n) and sends zi

to each party i.

AH∗ receives A’s state. AH∗ receives A’s randomness, inputs, auxiliary input, and zi

for i ∈ I.

Output. Each non-active party i outputs zi, while the corrupted parties output nothing.
AH∗ and A output some function of their view.

Weak and Strong FaF Definitions In the following, we use ≡ to denote computational
indistinguishability.

Definition 7.1 (Weak FaF). Let Π be a protocol for computing f . We say that Π
computes f with computational weak (t, h∗)-FaF security (with GOD), if the following
holds. For every non-uniform PPT adversary A controlling a set I ⊂ [n] of size at most
t in the real world, there exists a non-uniform PPT simulator SA controlling I in the
ideal world; and for every subset of the remaining parties H∗ ⊂ [n] \ I of size at most h∗
controlled by a non-uniform passive PPT adversary AH∗ there exists a non uniform PPT
simulator SAH∗ , controlling H∗ in the ideal world such that

IDEALSA,SAH∗
1λ,x,yA,yH

(SA) ≡ REALA,AH
1λ,x,yA,yH

(A)
and

IDEALSA,SAH∗
1λ,x,yA,yH

(SAH∗) ≡ REALA,AH
1λ,x,yA,yH

(AH∗)

for any set of inputs x ∈ ({0, 1}∗)n, any auxiliary inputs (yA, yH∗) ∈ ({0, 1}∗)2, and
any large enough security parameter λ ∈ N.

Definition 7.2 (Strong FaF). For A,SA,SAH∗ defined as in Definition 7.1, we say that
Π computes f with computational strong (t, h∗)-FaF security (with GOD), if

IDEALSA,SAH∗
1λ,x,yA,yH

≡ REALA,AH
1λ,x,yA,yH

for any set of inputs x ∈ ({0, 1}∗)n, any auxiliary inputs (yA, yH∗) ∈ ({0, 1}∗)2, and any
large enough security parameter λ ∈ N.

99

7. MPC with Friends and Foes

The main difference is that in the strong notion of FaF security we want the simulated
views of A and AH∗ to be indistinguishable from the real views even when taken together.

7.3. Relation of FaF to Other Notions
Somewhat surprisingly, Alon et al. show that standard security against a static adversary
making t+ h∗ active corruptions does not imply (t, h∗) FaF security. Informally, this is
because the simulator SAH∗ for the honest parties is not allowed to choose which input to
send to the ideal functionality, so it does not have as much power as the standard security
simulator S. Security against a (t, h∗) mixed adversary making t active corruptions and
h∗ passive corruptions also does not imply (t, h∗) FaF security. This is because the mixed
adversary simulator can decide the active parties’ inputs based on the passive parties’
inputs; however, the FaF simulator SA does not know any of the honest parties’ inputs
when simulating.

On the other hand, Alon et al. show that security against an adaptive adversary making
t+ h∗ active corruptions does imply (t, h∗) FaF security. This is because a simulator for
an adaptive adversary needs to be able to handle corruptions which occur after the end
of the protocol execution, at which point it cannot choose the input even for actively
corrupt parties. We observe that the proof given by Alon et al. also shows that security
against an adaptive mixed (t, h∗) adversary making t active corruptions and h∗ passive
corruptions implies (t, h∗) FaF security, and we use this in our strong FaF construction.

Here, we further explore the relationship between FaF security and other security
notions. First, we show the other direction: that (t, h∗) FaF security does not imply
security against a (t, h∗) mixed adversary making t active corruptions and h∗ passive
corruptions, making the FaF and mixed adversary models incomparable. We do so by
giving an example (Example 1) of a protocol that achieves (t, h∗) FaF security but not
(t, h∗) mixed adversary security. We also consider (t, t+h∗) Best of Both Worlds (BoBW)
security, where the same protocol must tolerate either t active corruptions or t + h∗

passive corruptions (but not both). We show that BoBW is incomparable to both FaF
and mixed adversaries.
Example 1 (Π¬MA). Consider a function f(x1, . . . , xn) such that the output of f does
not reveal the set of inputs (x1, . . . , xn) such as the XOR function. So we have that
f(x1, . . . , xn) = x1 ⊕ . . .⊕ xn Suppose a protocol ΠFaF computes any f with (t, h∗) FaF
security 1. Now, consider a function g((x1, ρ1), . . . , (xn, ρn)), where each party Pi has
an additional input ρi. g returns (x1, . . . , xn) to everyone if at least t+ 1 of the ρi’s are
equal, and returns f(x1, . . . , xn) to everyone otherwise. The following protocol Π¬MA
computes f(x1, . . . , xn) with (t, h∗) FaF security but not with security against a (t, h∗)
mixed adversary.

1. Each party Pi chooses ρi uniformly at random from a large space.

2. The parties use ΠFaF to compute g((x1, ρ1), . . . , (xn, ρn)).
1Here, it is implicity assumed that the values of (t, h∗) are such that they admit FaF security.

100

7.3. Relation of FaF to Other Notions

3. Each party outputs the value returned by ΠFaF.

Theorem 7.1. Protocol Π¬MA (Example 1) computes f(x1, . . . , xn) with (t, h∗) FaF
security but not with security against a (t, h∗) mixed adversary making t active corruptions
and h∗ passive corruptions.

Proof. Π¬MA achieves FaF security, because the adversary cannot possibly guess the
honest parties’ randomly chosen values ρi, and so cannot exploit the additional leakage
given by the output of g.

However, the mixed adversary knows h∗ passive party inputs and randomly chosen
ρi’s, and can choose one of those to set corrupt parties’ ρi’s to. This allows the mixed
adversary to learn all parties’ inputs. This is clearly insecure due to our assumption that
the set of inputs are not revealed by the output of f .

Remark 2. We observe that since the above reduction (Example 1) is information-theoretic,
plugging in the statistically-secure FaF protocol of [AOP20] to instantiate ΠFaF would
yield a statistically-secure protocol Π¬MA that satisfies (t, h∗) FaF security but not (t, h∗)
mixed security. This shows a separation between statistical FaF and mixed security
at the protocol level, which was left as an open question in [AOP20] (the only known
separation at the protocol level was for computational security).

Theorem 7.2. If ΠFaF from Example 1 is replaced with a protocol ΠBoBW which has
(t, t+ h∗) BoBW security, then protocol Π¬MA (Example 1) computes f(x1, . . . , xn) with
(t, t+ h∗) BoBW security, but not with security against a (t, h∗) mixed adversary making
t active corruptions and h∗ passive corruptions.

Proof. Π¬MA achieves BoBW security, since an adversary making just t corruptions
cannot guess honest parties’ ρi values and thus cannot exploit the additional leakage,
and an adversary making t+ h∗ corruptions cannot dishonestly choose passive parties’
values ρi to be equal.

However, as in the proof of Theorem 7.1, the mixed adversary knows h∗ passive party
inputs and randomly chosen ρi’s, and can choose one of those to set corrupt parties’ ρi’s
to.

We next show that BoBW security does not imply FaF security, by giving an example
(Example 2) of a protocol that achieves (t, t + h∗) BoBW security but not (t, h∗) FaF
security.

Example 2 (Π¬FaF). Consider a function f(x1, . . . , xn) as in Example 1. Suppose a protocol
ΠBoBW that computes any function with (t, t+h∗) BoBW security. The following protocol
Π¬FaF computes f(x1, . . . , xn) with (t, t+ h∗) BoBW security, but not with (t, h∗) FaF
security.

1. The parties use ΠBoBW to compute f(x1, . . . , xn).

101

7. MPC with Friends and Foes

2. If a party Pi receives a special “attack” message from t parties, it sends its input
xi to the other n− t parties. (Note that sending an “attack” message is not part
of the instructions.)

3. Each party outputs the value returned by ΠBoBW.

Theorem 7.3. Protocol Π¬FaF (Example 2) computes f(x1, . . . , xn) with (t, t+h∗) BoBW
security, but not with (t, h∗) FaF security.

Proof. Π¬FaF achieves (t, t+h∗) BoBW security: if there are only passive corruptions, no
party will send an “attack” message, and thus the second step of Π¬FaF will never come
into play. If there are only t active corruptions, they are able to trigger the attack, but
will not learn the honest parties’ inputs because those inputs are only sent to parties who
didn’t send attack messages. Π¬FaF does not achieve (t, h∗) FaF security: the t corrupt
parties can easily trigger an attack, causing all the honest parties to learn one another’s
inputs. This violates security due to our assumption that the output of f does not reveal
any party’s input.

It remains to show that neither FaF or mixed adversary security imply BoBW security.
This follows from the fact that in both FaF and mixed adversary security, the simulator
can choose the inputs of the actively corrupt parties. However, in BoBW security, in
the case where the adversary only makes passive corruptions, the simulator is unable to
choose the inputs of any parties.
Example 3 (Π¬BoBW). Consider a function f(x1, . . . , xn) as in the previous examples,
and a protocol ΠFaF that computes f with (t, h∗) FaF security. Now, consider a function
g((x1, y1), . . . , (xn, yn)), where each party Pi has an additional input yi. g returns
yi ∧ f(x1, . . . , xn) to each party Pi. It returns ⊥ to everyone else. The following protocol
Π¬BoBW computes g((x1, y1), . . . , (xn, yn)) with (t, h∗) FaF security but not with (t, t+h∗)
BoBW security.

1. The parties use ΠFaF to compute z = f(x1, . . . , xn).

2. Each party Pi outputs yi ∧ z.

Theorem 7.4. Protocol Π¬BoBW (Example 3) computes g((x1, y1), . . . , (xn, yn)) with
(t, h∗) FaF security but not with (t, t+ h∗) BoBW security.

Proof. Π¬BoBW achieves (t, h∗) FaF security: a simulator can always set one of the actively
corrupt parties’ auxiliary inputs yi to be 1 to learn the output of f .

However, it does not achieve BoBW security: in the case where the adversary can only
make passive corruptions, if all parties’ auxiliary inputs yi are 0, the simulator does not
learn the output of f 2, which it needs in order to simulate successfully.

2We assume that the function f is such that the output of f depends on the inputs of all parties.

102

7.4. Building Block: Decentralized Threshold FHE

Theorem 7.5. If ΠFaF from Example 3 is replaced with a protocol ΠMA which has (t, h∗)
mixed adversary security, then protocol Π¬BoBW (Example 3) computes g((x1, y1), . . . , (xn, yn))
with (t, h∗) mixed adversary security but not with (t, t+ h∗) BoBW security.

The proof is the same as the proof of Theorem 7.4.
Remark 3. We design the function g in such a way that any party can learn the output
of f by setting their auxiliary input yi to 1. This gives us FaF and mixed adversary
security; no matter whom the adversary actively corrupts, the simulator can use that
party to learn the output of f , and simulate for the rest.

7.4. Building Block: Decentralized Threshold FHE
We recap the definitions of d-out-of-n decentralized threshold fully homomorphic encryp-
tion (dTFHE) as presented by Boneh et al. [BGGJKRS18].

Syntax A dTFHE scheme is a tuple of PPT algorithms (DistGen,Enc,Eval,PDec,Combine,
SimPDec) with the following syntax:

DistGen(1λ, 1κ, i; ρi)→ (pki, ski): On input the security parameter λ, a depth bound
κ, party index i and randomness ρi, the distributed setup outputs a public-
secret key pair (pki, ski) for party i. The public key of the scheme is denoted
by pk =

(
pk1 ∥ pk2 ∥ . . . ∥ pkn

)
.

Enc (pk,m; ρ)→ c: On input a public key pk and a plaintext m in the message spaceM,
the randomized algorithm outputs a ciphertext c.

Eval (pk, C, c1, . . . , ck)→ c: On input a public key pk, a circuit C :Mk →M of depth
at most κ, and a set of k ciphertexts c1, . . . , ck (where k = poly(λ)), the evaluation
algorithm outputs an encrypted evaluation c.

PDec (pk, ski, c)→ di: On input the public key pk, a ciphertext c and a secret key ski

the algorithm outputs a partial decryption di.

Combine
(
pk, {di}i∈S

)
→ m\⊥: On input a public key pk and a set partial decryptions

{di}i∈S where S ⊆ [n], the combination algorithm outputs a plaintext m or the
symbol ⊥.

SimPDec
(
c, pk, {ski}i∈I , z

)
→ {di}i∈[n]\I : On input a ciphertext c, the public key pk,

the secret keys of at most d parties, and the target plaintext z, the simulated
decryption algorithm outputs partial decryptions on behalf of the rest of the parties
which are consistent with c decrypting to z.

103

7. MPC with Friends and Foes

Properties As in a standard homomorphic encryption scheme, we require that a dTFHE
scheme satisfies correctness and security, which we describe informally below and provide
the formal definition after the informal introduction.

Correctness. Informally, a dTFHE scheme is said to be correct if combining at least
d + 1 partial decryptions of any honestly generated ciphertext output by the
evaluation algorithm returns the correct evaluation of the corresponding circuit on
the underlying plaintexts.

Semantic Security. Informally, a dTFHE scheme satisfies semantic security if no PPT
adversary can distinguish between encryptions of a pair of (adversarially chosen)
plaintext messages m0 and m1 of the same length, even given the secret keys
corresponding to a subset I of the parties for any set I of size at most d. Since
we use the dTFHE scheme as a tool in our semi-malicious MPC construction3, we
define the notion with respect to a semi-malicious adversary A.

Simulation Security. Informally, a dTFHE scheme satisfies simulation security if there
exists an efficient algorithm SimPDec that takes as input a ciphertext c, the public
key pk, the secret keys of at most d parties and the target plaintext z, and outputs
a set of partial decryptions on behalf of the rest of the parties such that its output
is computationally indistinguishable from the output of the real algorithm PDec
that outputs partial decryptions of the ciphertext c using the corresponding secret
keys for the same subset of parties. Similar to semantic security, we define this
notion with respect to a semi-malicious adversary A.

After the informal, high level description of the desired properties we present the
formal definitions below:

Correctness. A dTFHE scheme is correct if for all sufficiently large λ, all k = poly(λ),
circuits C :Mk →M of depth at most κ and mi ∈M for i ∈ [k], the following condition
holds:

Let (pkj , skj) ← DistGen(1λ, 1κ, j) for all j ∈ [n], pk = (pk1||. . . ||pkn); let ci ←
Enc(pk,mi) for all i ∈ [k]; compute c← Eval(pk, C, c1, . . . , ck). For any S ⊆ [n], |S|> d,

Pr[Combine(pk, {PDec(pk, skj , c)}j∈S) = C(m1, . . . ,mk)] ≥ 1− negl(λ).

Semantic Security. A dTFHE scheme is semantically secure if for all sufficiently large
security parameters λ, all depth bound κ and any PPT semi-malicious adversary A, there
exists a negligible function negl such that the probability that A wins the game below is
less than 1

2 + negl(λ).

3where semi-malicious security [AJLTVW12] refers to security against an adversary who needs to follow
the protocol specification, but has the liberty to decide the input and random coins in each round.

104

7.4. Building Block: Decentralized Threshold FHE

Adversary A Challenger C
I ⊂ [n], |I| ≤ d

I, {ρi}i∈I
(m0,m1) ∈M2

−−−−−−−−−−−−−−−−−−−−▷
for i ∈ I:

(pki, ski)← DistGen(1λ, 1κ, i; ρi)
for i ∈ [n] \ I:

sample ρi(
pki, ski

)
← DistGen(1λ, 1κ, i; ρi)

Set pk =
(
pk1 ∥ pk2 ∥ . . . ∥ pkn

)
Sample a bit b← {0, 1}
c← Enc (pk,mb)

pk, c, {ski}i∈I
◁−−−−−−−−−−−−−−−−−−−−

b′−−−−−−−−−−−−−−−−−−−−▷
A wins if b = b′

Simulation Security. A dTFHE scheme satisfies simulation security if there exists a
simulator SimPDec such that for all sufficiently large security parameters λ, all depth
bound κ, and any PPT semi-malicious adversary A, the probability that A wins the
game below is less than 1

2 + negl(λ).

105

7. MPC with Friends and Foes

Adversary A Challenger C
I ⊂ [n], |I| ≤ d

I, {ρi}i∈I
(m1, . . . ,mk) ∈Mk
−−−−−−−−−−−−−−−−−−−−▷

(ρ′1, . . . , ρ′k)
for i ∈ I:

(pki, ski)← DistGen(1λ, 1κ, i; ρi)
for i ∈ [n] \ I:

sample ρi(
pki, ski

)
← DistGen(1λ, 1κ, i; ρi)

Set pk =
(
pk1 ∥ pk2 ∥ . . . ∥ pkn

)
ci ← Enc

(
pk,mi; ρ′i

)
∀i ∈ [k]

pk, {ci}i∈[k]
◁−−−−−−−−−−−−−−−−−−−−

C :Mk →M−−−−−−−−−−−−−−−−−−−−▷
c← Eval (pk, C, c1, . . . , ck)
Sample a bit b← {0, 1}
if b = 0:

for i ∈ [n] \ I:
di ← PDec (pk, ski, c)

if b = 1:
z ← C(m1, . . . ,mk)
{dj}j∈[n]\I ← SimPDec

(
c, pk, {ski}i∈I , z

)
{dj}j∈[n]\I

◁−−−−−−−−−−−−−−−−−−−−
b′−−−−−−−−−−−−−−−−−−−−▷

A wins if b = b′

7.5. Three-Round MPC with Weak FaF and Guaranteed Output
Delivery

In this section, we present a three-round MPC construction in the CRS model (where it
is assumed that parties have access to a common reference string at the beginning of the
protocol execution) that achieves weak FaF security and GOD when n > 2t+ h∗. This is
round-optimal, following the impossibility of two-round MPC with weak FaF security
and GOD shown in [AOP20] (which holds even in the CRS model). Specifically, their
result shows that there are functionalities that cannot be computed with (1, 1) weak FaF
security and GOD in less than three rounds, for any n ≥ 3 4.

Our construction is based on the three-round construction of Gordon et al. [GLS15] that
achieves standard security with GOD against t < n/2 active corruptions. At a high-level,
this construction uses the tool of distributed threshold fully homomorphic encryption

4The proof in [AOP20] is a simple observation regarding the impossibility of computing the AND
functionality with GOD in two rounds against 2 corrupted parties, proved by Gennaro et al. [GIKR02];
which holds in the common reference string (CRS) model.

106

7.5. Three-Round MPC with Weak FaF and Guaranteed Output Delivery

scheme (dTFHE) with threshold t and proceeds as follows. First, the distributed setup
allows the parties to obtain their individual public / secret key pairs. Each of them
broadcasts their public key. Next, the parties broadcast encryptions of their input, which
can be homomorphically evaluated to compute an encryption of the output. In the last
round, the parties compute and broadcast partial decryptions of the output ciphertext,
which can be combined to obtain the output.

We observe that the above construction admits (t, h∗) weak FaF security and GOD
when n > 2t+ h∗, if a dTFHE scheme with threshold (t+ h∗) is used instead. Intuitively,
security of such a dTFHE scheme ensures that the joint view of the active and passively
corrupt parties comprising of (t+ h∗) secret keys does not reveal any information about
the inputs of the honest parties (beyond the output of computation). Correctness of
such a scheme ensures that even if up to t parties abort, guaranteed output delivery is
achieved because the partial decryptions sent by the remaining n − t > t + h∗ parties
suffice to compute the output.

Similar to the work of Gordon et al. [GLS15], we present a three-round construction
Πsm

wFaF that is secure against semi-malicious adversaries. Semi-malicious security was
introduced by Aashrov et al. [AJLTVW12] and subsequently used in many works as
a stepping-stone on the way to achieving active security. Recall that a semi-malicious
adversary needs to follow the protocol specification, but has the liberty to decide the
input and random coins in each round. Additionally, the parties controlled by the
semi-malicious adversary may choose to abort at any time. To upgrade a semi-malicious
construction to achieve active security, the general round-preserving compiler of Asharov
et al. uses UC NIZKs (non-interactive zero-knowledge proofs) in the CRS model. We
should point out that since FaF security becomes relevant only in settings with more
than 3 parties, the standard security notion for 2-party NIZK used as a building block
would not affect FaF security of the overall protocol.

We give a formal description of the protocol Πsm
wFaF below.

Inputs: Each party Pi has an input xi ∈ {0, 1}λ.

Output: f(x1, . . . , xn), where the function f is represented by a circuit C.

Tools: A (t+ h∗)-out-of-n dTFHE scheme (DistGen,Enc,Eval,PDec,Combine, SimPDec).
Such a scheme can be built based on LWE [BGGJKRS18; GLS15].

Round 1: Each party Pi does the following:
• Computes (pki, ski)← DistGen(1λ, 1κ, i; ρi) using randomness ρi.
• Broadcasts pki.

Round 2: All parties set pk := (pk1||. . . ||pkn) (where a default public key is used
corresponding to parties who have aborted in the first round).
Each party Pi does the following:

• Computes the encryption of its input as ci ← Enc(pk, xi).

107

7. MPC with Friends and Foes

• Broadcasts ci.

Round 3: Each party Pi does the following:
• Computes the homomorphic evaluation of the circuit C on the ciphertexts

as c← Eval(pk, C, c1, . . . , cn), where cj is computed using default input and
randomness if Pj aborted during the previous rounds.

• Computes her own partial decryption as di ← PDec(pk, ski, c).
• Broadcasts the partial decryption di.

Output Computation: Let S ⊆ [n] denote the set of parties who have not yet aborted.
Each party combines the partial decryptions broadcast by parties in S to obtain
the output as z ← Combine(pk, {dj}j∈S).

Protocol Πmal
wFaF. Let Πmal

wFaF denote the three-round construction obtained by applying
the compiler of Asharov et al. [AJLTVW12] to the three-round protocol Πsm

wFaF in the
semi-malicious setting. In particular, in every round of Πmal

wFaF, each party executes the
actions of the corresponding round of Πsm

wFaF along with a non-interactive zero-knowledge
proving that she is following the protocol consistently with respect to certain random coins.
This compiler is round-preserving and preserves security of the underlying construction
(i.e. if the underlying protocol achieves GOD, so does the compiled protocol).

We state the formal theorem below.

Theorem 7.6. Let f be an efficiently computable n-party function and let n > 2t+ h∗.
Assuming a setup with CRS and the existence of a (t+h∗)-out-of-n decentralized threshold
fully homomorphic encryption scheme, the three-round protocol Πmal

wFaF achieves (t, h∗)
weak FaF security with guaranteed output delivery.

Proof. To prove the theorem, we construct the simulators SA and SAH∗ for Πsm
wFaF in the

semi-malicious setting. This suffices to complete the proof, since active security would
directly follow from the result of [AJLTVW12].

We begin with the description of SA. Let I and H∗ denote the set of indices of the t
semi-malicious corrupt parties and the remaining parties respectively.

First Round: SA simulates public keys of honest parties by honestly generating key pairs.

Second Round: SA simulates input ciphertexts by broadcasting cj ← Enc(pk, 0) on
behalf of Pj , where j ∈ [n] \ I.

Third Round: SA does the following:
• Computes c ← Eval(pk, C, c1, . . . , cn) honestly, where ci is computed using

default input and randomness if Pi (i ∈ I) aborted during the previous rounds.
• Reads the witness tape of the semi-malicious adversaries to learn the inputs
xi and secret keys ski for each i ∈ I. If Pi has aborted, xi is set as the default
input.

108

7.5. Three-Round MPC with Weak FaF and Guaranteed Output Delivery

• Invokes the ideal functionality F on inputs xi for i ∈ I and receives the output
z.

• Runs the simulated decryption algorithm to obtain partial decryptions as
{dj}j∈[n]\I ← SimPDec

(
c, pk, {ski}i∈I , z

)
.

• Broadcasts the partial decryption dj on behalf of party Pj (j ∈ [n] \ I).

Consider the following sequence of hybrids:

Hyb0: Same as the real world execution of Πsm
wFaF.

Hyb1: Same as Hyb0, except that the partial decryptions for honest parties are computed
as SimPDec

(
c, pk, {ski}i∈I , z

)
instead of PDec(pk, ski, c). It follows from simula-

tion security of the dTFHE scheme that this hybrid is indistinguishable from the
previous hybrid.

Hyb2: Same as Hyb1, except that the input ciphertexts of honest parties are computed
as cj ← Enc(pk, 0) using a dummy input 0 for j ∈ [n] \ I, instead of using the
actual input xj . It follows from the semantic security of the dTFHE scheme that
this hybrid is indistinguishable from the previous hybrid.

Since Hyb2 corresponds to the ideal execution and every pair of consecutive hybrids
are indistinguishable, this completes the proof that the view of A in the real world is
indistinguishable from her view in the ideal world execution.

Next, suppose we fix the adversary A corrupting the parties in I where I is of size
at most t, and let H∗ ⊆ [n] \ I of size at most h∗. The passive simulator SAH∗ works
very similarly to SA. The only difference is that the messages the simulator sends to the
adversary on behalf of the parties in H∗ are the actual messages computed as per protocol
specifications. For instance, the input ciphertexts will be computed as encryptions of the
real inputs of parties in H∗ (unlike in SA where it was computed as encryptions of dummy
input 0). Similarly, the partial decryptions of the parties in H∗ would be computed
honestly using their secret keys (not as output of SimPDec). Lastly, the sequence of
hybrids and indistinguishability can be argued as above; it follows from the semantic and
simulation security of the dTFHE scheme having threshold (t+ h∗).

Remark 4. Note that the protocol described in this section is not strongly FaF secure; this
is because the simulator SA does not know the honest parties’ inputs, and instead encrypts
a default value on their behalf. However, this simulation cannot then be consistent with
an honest party’s simulated view, since their view must include their real input and
randomness that maps that input to the ciphertext they broadcast.

109

7. MPC with Friends and Foes

Adaptive Mixed-
Adversary
Security

(t fail-stop
corruptions,
h∗ passive

corruptions)

Adaptive Mixed-
Adversary

Security (t active
corruptions,
h∗ passive

corruptions)

(t, h∗)-FaF
[CLOS02] [AOP20]

Figure 7.3.: Getting (t, h∗)-FaF Security from BGW

7.6. Optimal-Threshold MPC with Strong FaF and Guaranteed
Output Delivery

Alon et al. [AOP20] showed that even weak FaF with GOD is impossible if 2t+ h∗ ≥ n.
Their proof holds even if arbitrary correlated randomness is available to the parties. So,
the best that we could possible hope for is strong FaF with GOD and 2t+ h∗ + 1 = n.

In this section we prove that BGW with Beaver triple preprocessing and augmented
with adaptive zero knowledge proofs achieves exactly this. We do this in three steps, as
described in Figure 7.3. First, in Section 7.6.1, we prove that BGW with Beaver triple
preprocessing achieves security with GOD against adaptive mixed (fail-stop / passive)
adversaries. Second, in Section 7.6.2, we use the compiler of Canetti et al. [CLOS02] to
show that our protocol against adaptive mixed (fail-stop / passive) adversaries can be
augmented with adaptive commitments and zero knowledge proofs of correct behavior in
order to achieve security against adaptive mixed (active / passive) adversaries. Third,
we invoke a theorem from Alon et al. [AOP20] to argue that any such protocol achieves
GOD with strong FaF security.

We restate the theorem of Alon et al. [AOP20] which connects adaptive security to
strong FaF below. Alon et al. prove that (t+ h∗) adaptive security implies (t, h∗) FaF;
however, their proof can be strengthened (with no modifications necessary) to show that
adaptive mixed security with a corruption budget of t active corruptions and h∗ passive
corruptions implies (t, h∗) FaF. As mentioned in 7.3, security against a (t, h∗) mixed
adversary making t active corruptions and h∗ passive corruptions does not imply (t, h∗)
FaF security because the mixed adversary simulator can decide the active parties’ inputs
based on the passive parties’ inputs but the FaF simulator SA does not know the honest
parties’ inputs. However, in the case of an adaptive mixed adversary, any party that
is corrupted by an adaptive malicious adversary after the protocol has terminated can
essentially be viewed as a passive corruption since the adversary cannot control their
input.

Theorem 7.7 ([AOP20], Theorem 5.3). Let type ∈ {computational, statistical, perfect},
and let Π be an n-party protocol computing some n-party functionality f with type adaptive
mixed security with a corruption budget of t active corruptions and h∗ passive corruptions.
Then Π computes f with type strong (t, h∗)-FaF-security.

110

7.6. Optimal-Threshold MPC with Strong FaF and Guaranteed Output Delivery

7.6.1. Adaptive BGW Against Mixed (Fail-Stop / Passive) Adversaries

We first recall BGW (Section 7.6.1), and how Beaver triples can be used to improve the
corruption threshold (Section 7.6.1).

Brief Overview of BGW Without Preprocessing

Let F be a finite field. A secret value s is secret shared using a polynomial fs(x) ∈ F[x]
of degree d such that fs(0) = s and each party Pi holds fs(i). The evaluation of the
circuit then proceeds gate by gate. In order to add two secret shared values x and y,
each party Pi can locally add the shares fx(i) and fy(i) that they are holding to get
fx+y(i) = fx(i) + fy(i). This is a valid sharing of x + y, because fx+y is of the same
degree as fx and fy and fx+y(0) = fx(0) + fy(0) = x+ y. To reconstruct an output z, all
parties broadcast their share fz(i), and everyone interpolates the polynomial.

Multiplication gates pose more of a challenge. If a party Pi computes f ′xy(i) = fx(i)fy(i),
she gets a point on a polynomial f ′xy such that f ′xy(0) = xy, which is what we wanted.
The caveat is that f ′xy is of degree 2d; if the degree keeps growing in this way, it will be
too high to admit interpolation given only n− t points (which is necessary if we would
like to withstand fail-stop corruptions). Additional work needs to be done to reduce the
degree of this polynomial: 2d+ 1 parties Pi need to reshare their points f ′xy(i) using a
new d-degree polynomial (that is, party Pi will pick a random polynomial ri of degree t
such that ri(0) = f ′xy(i) and send ri(j) to all other parties Pj). Each party Pj can locally
compute fxy(j) = ∑

i∈R λiri(j) where the λi’s are the appropriate Lagrange coefficients.

Threshold Requirements Now, consider the (t, h∗)-FaF setting. In order to withstand
fail-stop corruptions, even during degree reduction, we need 2d < n− t. In order to have
FaF security, we need t+ h∗ ≤ d. We thus need

t+ h∗ <
n− t

2

⇒ 3t+ 2h∗ < n,

which is not optimal.

Brief Overview of BGW With Preprocessing

In order to approach the optimal threshold, we change the way we do multiplication to
rely on Beaver triple pre-processing [Bea92]. Since this is work that explores the feasibility
of FaF we can assume that the Beaver triples are generated by a trusted third party.
We leave open the question of how such triples can be generated with security against a
FaF adversary, eliminating the need for setup by a trusted third party. We give each
party shares fa(i), fb(i), fc(i) of a randomly chosen a and b, and of their product c = ab.
We use these shares in order to multiply x and y as follows. Each party Pi computes
fδ(i) = fx(i) − fa(i) and fϵ(i) = fy(i) − fb(i) and broadcasts these values. All parties
reconstruct δ = x− a and ϵ = y − b, and compute fxy(i) = fc(i) + ϵfx(i) + δfy(i)− δϵ.

111

7. MPC with Friends and Foes

We can see that fxy has the same degree d, and that fxy(0) = c + ϵx + δy − δϵ =
c+ (y− b)x+ (x− a)y− (x− a)(y− b) = c+ xy− xb+ yx− ya− xy+ xb+ ya− ab = xy,
because c = ab.

Threshold Requirements As in Section 7.6.1, in order to have FaF security, we need
t + h∗ ≤ d. However, in order to withstand fail-stop corruptions, now we only need
d < n − t. Putting these together, we need t + h∗ < n − t ⇒ 2t + h∗ < n, which is
optimal.

Adaptive Security of BGW With Preprocessing

We now prove that BGW with Preprocessing with 2t+ h∗ < n and with d = t+ h∗ is
adaptively secure.

Theorem 7.8. The construction summarized in Section 7.6.1 with 2t + h∗ < n and
with d = t + h∗ achieves security with guaranteed output delivery against an adaptive
adversary with a budget of t fail-stop corruptions and h∗ passive corruptions.

We follow the blueprint of Damgård and Nielsen [DN14] for proving the adaptive
security of BGW. We start by describing a simulator Sstatic for a static adversary, who is
given the inputs of the passive and the fail-stop corrupted parties (which are similar to
passive corruptions except that the adversary can choose to abort them at any step in
the real world and substitute their input with a default input in the ideal world). Sstatic

interacts with the adversary on behalf of the set H of the n− t− h∗ honest parties. She
shares the input 0 on behalf of honest parties Pi ∈ H. If a fail-stop party Pi fails to
share an input, that party implicitly gives the degree 0 sharing of 0, where every share
is 0 (thereby, its default input can be considered as 0). Sstatic forwards these inputs to
the ideal functionality to obtain the output. Sstatic follows the protocol on behalf of the
honest parties up until it’s time to reconstruct the output. When it’s time to reconstruct
the output, Sstatic computes the difference δ = z − z′, where z′ is the computed output
(shared on the polynomial fz′), and z is the output dictated by the ideal functionality.
Sstatic chooses a random polynomial ∆ of degree d such that ∆(0) = δ and ∆(i) = 0 for
all i ∈ I. Notice that fz′ + ∆ is a sharing fz of the desired output z = z′ + δ. Sstatic uses
shares fz(i) on behalf of honest parties Pi ∈ H. (We make use of an assumption that
the output z is produced by a multiplication gate. This forces the polynomial fz used
for the output to be a random degree d polynomial with the only constraint being that
fz(0) = z.)

We now describe the simulator S for an adaptive adversary. S starts out much like
Sstatic, by interacting with the adversary on behalf of the initial set H of honest parties,
and maintaining a record of their views (including their shares of all intermediate values).
However, unlike Sstatic, at any point S may be asked to explain the view of one of these
honest parties Pi, in the event that Pi becomes corrupt. It is insufficient for S to hand
over the current simulated view of Pi, since S used the input 0 on behalf of Pi; this
makes the simulated view clearly distinguishable from the real view, where the real input
would have been used. So, S must adjusts the shares she has stored to account for the

112

7.6. Optimal-Threshold MPC with Strong FaF and Guaranteed Output Delivery

use of the real input. Upon the corruption of party Pi, the simulator makes the following
adjustments:

Shares of Input xi: When party Pi is corrupted, S learns the real input xi. Let H be the
set of parties who were honest before the corruption of party Pi, and I be the set
of parties who were corrupt. Note that |I|< t+ h∗ = d; so, the views of the parties
in I contain no information about {fxi(j)}j∈H, even if she knew xi. S cannot
change the shares of parties in I, so she picks a random difference polynomial
∆ s.t. ∆(0) = xi and ∆(i) = 0 for i ∈ I. S updates the sharing polynomial as
fxi := fxi + ∆.

Addition or Multiplication by a Constant: In this case we only have local computation,
so S simply recomputes the shares of the honest parties that were affected by the
change to fxi .

Multiplication: Recall that for the multiplication of x by y each party j has published
her share of δ, which is fδ(j) = fx(j) − fa(j), and her share ϵ, which is fϵ(j) =
fy(j)− fb(j) (where a, b and c is the Beaver triple s.t. c = ab). We will consider
only x, a and δ; the case for y, b and ϵ is analogous. Since the adversary already
saw δ = x− a, and x might have changed, S must adjust a accordingly. Let xold

be the old value of x (shared on fxold
), and aold be the old value of a (shared on

faold
). S defines a := aold + (x − xold), and lets fa := faold

+ fx − fxold
. Observe

that δ = xold−aold = xold− (a− (x−xold)) = xold−a+x−xold = x−a, as desired.
The shares on fa are now consistent with the shares of δ previously published.
Note that we have changed the values of a and b, but not the value of c; so, it may
no longer be the case that c = ab. However, this is not a problem, since the view of
the adversary has no information about c (as she has insufficient shares).

Output Reconstruction: For an output z, the adversary has already seen all of the
points on fz. So, now we need to fix Pi’s view to be consistent with fz(i). Recall
that we assume that the output is produced by a multiplication gate, which uses a
Beaver triple a, b, c. Let cold be the old value of c (shared on fcold

). Let a (shared
on fa) and b (shared on fb) be the rest of that Beaver triple, and let x (shared
on fx) and y (shared on fy) be the two inputs to the multiplication gate. Recall
that δ = x − a and ϵ = y − b are fixed. S defines c := z −

(
ϵx + δy − δϵ

)
, and

fc := fz − (ϵfx + δfy − δϵ). This is consistent with what the adversary has seen.
As before, it may no longer be the case that c = ab; however, this is not a problem,
since the adversary will have seen too few shares to be able to tell.

7.6.2. Adaptive BGW Against Mixed (Active / Passive) Adversaries

We now discuss how the security of the construction in Section 7.6.1 can be boosted
to achieve guaranteed output delivery against a mixed adaptive adversary controlling t
parties actively and h∗ parties passively. This can be done by using the generic compiler

113

7. MPC with Friends and Foes

of Canetti et al. [CLOS02] that transforms a protocol secure against adaptive fail-stop
corruptions to a protocol secure against adaptive active corruptions. At a high-level, this
compiler follows the GMW compiler paradigm [GMW87a] where the parties (a) run an
augmented coin-tossing protocol to obtain their respective uniformly distributed random
tapes and commitments to other parties’ random tapes, (b) commit to their inputs, (c)
run the underlying fail-stop adaptively secure MPC protocol, while proving in each round
using zero-knowledge that the computations have been done correctly. We can use the
same compiler to upgrade security of the construction in Section 7.6.1 (achieving adaptive
security against t fail-stop corruptions and h∗ passive corruptions) to adaptive security
against t active corruptions and h∗ passive corruptions with a minor simplification. Since
our underlying protocol satisfies perfect correctness (i.e. the protocol results in the correct
output when everyone executes the protocol steps honestly, irrespective of the choice of
random tapes of the parties), the augmented coin-tossing protocol used to determine
the random tapes of the parties in the compiler of Canetti et al. can be avoided. The
rest of the compiler remains the same; it relies on adaptively secure commitment and
zero-knowledge tools (which can be based on enhanced trapdoor permutations). Since
FaF security becomes relevant only in settings with more than 3 parties, the standard
security notion for 2-party NIZK used as a building block would not affect FaF security
of the overall protocol.

We argue that this simplified compiler preserves guaranteed output delivery. This
is because, whenever an actively corrupt party misbehaves in the compiled protocol
(for instance, a party aborts or the zero-knowledge proof showing the correctness of her
actions in round r of the underlying protocol fails), such a scenario can be translated to
an analogous scenario in the underlying protocol where the same party is fail-stop corrupt
and stops communicating in round r. It is now easy to see that since the underlying
protocol achieved GOD against t fail-stop and h∗ passive corruptions, the same guarantees
must hold against t active and h∗ passive corruptions in the compiled protocol as well.

We state the formal theorem below.

Theorem 7.9. The construction summarized in Section 7.6.2 with 2t + h∗ < n and
with d = t + h∗ achieves security with guaranteed output delivery against an adaptive
adversary with a budget of t active corruptions and h∗ passive corruptions.

114

Part III.

Improving Efficiency for MPC

115

8. Compressing Pseudorandom Permutation
Correlations

8.1. Introduction

Modern secure multi-party computation protocols are split into two phases: a function-
independent offline phase and a function-dependent online phase. In the offline phase,
parties generate preprocessing material, taking the form of correlated randomness, which
they store for use in the online phase. Then, in the online phase, the parties use the
generated correlated randomness to aid in the computation of the function. This model
improves the efficiency of the online phase (e.g., by minimizing communication and
rounds of interaction between parties) at the cost of an expensive preprocessing phase.

Starting with the work of Boyle et al. [BCGI18; BCGIKS20b; BCGIKS19], the ef-
ficiency of the offline phase—namely the generation of correlated randomness—was
improved significantly with the help of pseudorandom correlation generators (PCGs) and
pseudorandom correlation functions (PCFs) [BCGIKS20a],1 which allow parties to locally
expand a short seed into a large amount of correlated pseudorandomness. This paradigm
enables efficient deployments of multi-party computation protocols in the preprocessing
model, by significantly reducing the availability and interaction overheads incurred on
the parties to generate correlated randomness.

In recent years, many constructions of PCGs and PCFs have been introduced, for
various types of useful pseudorandom correlations such as oblivious transfer (OT) correla-
tions [BCGIKS19; BCGIKRS19] and Beaver triple correlations [BCGIKS20b; BCCD23].
On the high end, there are generic approaches to obtaining PCGs and PCFs for large
classes of correlations based on multi-key FHE or homomorphic secret sharing for cir-
cuits [DHRW16; BCGIKS19], and even for all efficiently computable correlations by
relying on indistinguishability obfuscation [DHRW16; ASY22], but these approaches do
not result in concretely efficient constructions. On the low end, constructions from vari-
ants of the Learning Parity with Noise (LPN) assumption and group-based assumptions
give concretely efficient PCGs (and even PCFs [OSY21; BCGIKS20a; BCGIKRS22]) but
only support limited correlations, e.g., typically OT and/or Beaver triple correlations.

The additive barrier. Most known constructions of PCGs and PCFs are limited to
additive sharings of the target correlations. That is, each party obtains an additive secret
share of the pseudorandom target correlation. In particular, this barrier has prevented

1Roughly speaking, a PCF can be used to generate a fresh sample from the target correlation “on-the-fly”
via an evaluation algorithm whereas PCGs require expanding all correlations in a single monolithic
evaluation.

117

8. Compressing Pseudorandom Permutation Correlations

Assumption
Target

Correlation # parties
PCF [DHRW16] iO Any reverse-samplable 2
PCF [ASY22] multi-key FHE + iO Any reverse-samplable Any
PCF [ASY22] multi-key FHE + iO + ROM Any Any
PCG (Section 8.4) Quasi-Abelian SD Permutations (biased) 3
PCF (Section 8.4) HSS+PRF in NC1 Permutations 3

Table 8.1.: Constructions of PCGs and PCFs for non-additive correlations. Reverse-samplable
means that, given the corrupt parties’ outputs of a correlation sample, the honest
parties’ outputs can be efficiently simulated in a way that is indistinguishable from
the original sample.

realizing concretely efficient PCGs for many interesting correlations that cannot be
inherently represented by an additive secret sharing of the target correlations. This
includes the case where parties need to obtain a pseudorandom permutation correlation or
Shamir secret shares of some target correlation. While a very natural requirement, even
high-end primitives such as multi-key FHE cannot be adapted to produce such correlations.
Indeed, the only known way of achieving such “non-additive” correlations requires using
indistinguishability obfuscation (iO) in conjunction with other assumptions [DHRW16;
ASY22].

Our contributions. In this paper, we initiate the study of PCGs and PCFs for the
pseudorandom permutation correlation.

With an n-party pseudorandom permutation correlation, each party can locally obtain
a component of a pseudorandom permutation over the set {1, . . . , n}, while guaranteeing
the full permutation remains hidden to any coalition of n−2 colluding parties. A PCG or
PCF for pseudorandom permutations allows generating a large batch of ℓ such correlations
with low communication complexity, e.g., polylog(ℓ) following a one-time setup.

We construct three-party (n = 3) PCGs and PCFs from assumptions that are not
known to imply iO. In particular, we show how to construct a PCG for permutations
from the Quasi-Abelian Syndrome Decoding assumption (a standard variant of the
LPN assumption) and a PCF for permutations from Homomorphic Secret Sharing
(HSS) [BGI16a; BCGIO17] for branching programs in conjunction with a PRF in NC1,
which can be instantiated under DCR [OSY21; RS21], LWE [BKS19] or assumptions in
class groups [ADOS22]. While our HSS-based approach is still primarily of theoretical
interest, our LPN-based construction results in a concretely-practical PCG, which we
benchmark with an implementation.

We summarize our results in Table 8.1 and compare with prior approaches.

Applications. Our results carry an important conceptual contribution: They demon-
strate the first feasibility result (without resorting to iO) for constructing PCGs/PCFs for
non-additive, reverse-sampleable correlations. We hope that some of the ideas developped
in this work will pave the way to future developments on this challenging goal. Beyond

118

8.2. Technical Overview

their conceptual benefits, our constructions have concrete applications in anonymous
communication protocols and single secret leader election. In particular, we find that we
can replace the expensive “offline” preprocessing protocol of Studholme and Blake [SB07]
(which is used to generate pseudorandom permutations) with a PCG, to instantiate a
Dining-Cryptography network for anonymous broadcast with optimal communication
overheads. In particular, we show that using a PCG, each party can locally determine
where to write their message in a bulletin board, in each round. Here, the pseudorandom-
ness of the permutation guarantees that no other party learns the association between
messages and the other parties and the permutation itself guarantees each party writes to
a uniquely assigned “slot” removing the need for redundancy (a common solution used in
prior work [CBM15; GJ04]). We also show how a PCF for pseudorandom permutations
enable non-interactive single secret leader election (SSLE) protocol, where the leader
is elected by having the lowest permutation value. In turn, SSLE has applications to
proof-of-stake cryptocurrencies and other problems in distributed systems [BEHG20].

8.2. Technical Overview
In this section, we provide a detailed technical overview of our approach and construction.
In Section 8.2.1, we briefly overview the syntax of PCGs. In Section 8.2.2, we overview
the main ideas and general approach behind our constructions. Then, in Sections 8.2.3
and 8.2.4, we overview our PCG and PCF constructions.

8.2.1. Background
Here we give a brief overview of PCGs and PCFs to aid in understanding the technical
overivew. See Section 8.3 for formal definitions.

A PCG for a target two-party correlation C consists of two algorithms:

• Gen(1n)→ (k0, k1): a randomized algorithm that generates a pair of short, corre-
lated seeds (k0, k1) given a security parameter n, and

• Expand(kσ)→ Rσ: a deterministic algorithm which stretches a seed kσ into a long
output Rσ.

In the case of a PCF, Expand is replaced with an evaluation algorithm Eval that takes
an additional input x and outputs a single instance of the correlation (computed as a
function of x).

The security requirement for a PCG is that the joint outputs (R0, R1) should be
indistinguishable from C, not only to external parties but also to each of the parties that
possesses only one of the seeds. PCFs have an analogous security requirement with the
main difference being on-demand evaluation of R0 and R1.

8.2.2. Main ideas and approach
All our constructions are limited to the three-party setting and we call these parties
Alice, Bob, and Carol. Both our PCG and PCF construction share a common template,

119

8. Compressing Pseudorandom Permutation Correlations

which is refined from a natural but failed strawman approach.

The strawman approach. Examining a three party permutation, we first observe
that we can view the problem as generating additive sharing of the “zero correlation”
(modulo 3), where the parties always obtain additive shares of zero. To see this, note
that a permutation over the set {0, 1, 2} can viewed as giving parties pseudorandom
shares of zero, since the sum of the permutation values (when parsed as additive shares)
is always 3, which is equivalent to zero in F3. Unfortunately, while all pseudorandom
permutations can be viewed as shares of zero, not all pseudorandom shares of zero form
a valid pseudorandom permutation. Specifically, in the three-party case, all shares of
zero that consist of the same value in F3, result in parties having shares of zero but an
invalid permutation (since all parties have the same output). Therefore, the problem of
constructing a PCG for permutations (in the three party case) boils down to ensuring
that all three “pseudorandom shares of zero” held by the parties are distinct.2 However,
eliminating these “bad” cases turns out to be non-trivial.

Guaranteeing distinct shares. Our first observation is that for just two parties, say
Alice and Bob, we can guarantee distinct shares by having the parties generate shares of
a pseudorandom bit µ ∈ {0, 1} over F3. Then, using shares of µ we can guarantee distinct
shares between them as follows. Let a ∈ F3 be Alice’s share of µ and b ∈ F3 be Bob’s
share of µ, such that a+b (mod 3) = µ. If Alice outputs a and Bob outputs 2−b, as their
components of the pseudorandom permutation, then it is clear that the outputs of Alice
and Bob are trivially distinct as 2− b = a+ 2− µ (mod 3). Furthermore, Alice cannot
distinguish whether Bob outputs a + 1 or a + 2, ensuring privacy of the permutation
so far. However, how can Carol get her share of the permutation? Ideally, we’d like to
repeat the same process between Alice and Carol, such that Carol’s output is distinct to
both Bob’s and Alice’s output, and Alice’s output/share stays the same. However, this
presents a challenge: Carol’s share must somehow correlate with Bob’s share to ensure
they also have distinct outputs and Alice’s share needs to remain the same. Overcoming
this turns out to be the crux of our solution to compressing pseudorandom permutations
in the three party setting, and we solve this challenge in two different ways to arrive at
our PCG and PCF constructions for permutations (overviewed in Sections 8.2.3 and 8.2.4,
respectively). However, ignoring this problem for the time being, we first explain how
this gives us a template for a three-party construction.

The general template. Notice that if Alice and Bob, and Alice and Carol, can each
generate a pseudorandom subtractive sharing of a bit µ and of 1− µ, respectively, such
that Alice maintains the same share a in both cases, then Carol’s share c will be such
that 2 − c (mod 3) is guaranteed to be distinct from both Alice’s and Bob’s output.

2It suffices to ensure that the parties have shares a + b + c = 0 and a ̸= b. This implies a, b and c are
pairwise distinct, since if e.g., c was equal to b then we have a = −2b = b (mod 3), a contradiction.

120

8.2. Technical Overview

Specifically, if we expand the outputs of each party, we have that:

Alice outputs: a := x

Bob outputs: b := x+ 2− µ
Carol outputs: c := x+ 1 + µ

Note that a, b, c are pairwise distinct. This is because a = b would imply µ = 2; a = c
would imply µ+ 1 = 0; and b = c would imply 2µ = 1 (mod 3). All these statements are
false for µ ∈ {0, 1}. More precisely, Bob and Carol must be given the ability to generate
shares of pseudorandom bits µ and of 1− µ, respectively.

In summary, this brings us to a sufficient condition for compressing a pseudorandom
permutation: Generating pseudorandom shares of a bit µ ∈ F3 and pseudorandom shares
of 1− µ while fixing one of the shares to be the same in both cases. Unfortunately, while
this requirement may sound trivial to achieve, in reality it requires overcoming several
roadblocks. The first challenge, as alluded to above, is that we need to ensure that Alice’s
share is identical for both the shares of µ and the shares of 1− µ. The second challenge
is that we need to generate this bit in a non-binary field F3, and efficient protocols for
computing bits in such fields typically require interaction [IKNZ23]. We now explain
these roadblocks in more detail and highlight the strategies we use to overcome them.

Challenges in fixing Alice’s share. Ensuring that Alice’s share is the same when
generating pseudorandom shares of µ and 1− µ with Bob and Carol requires a notion of
“programmability.” Prior notions of programmable PCG [BCGIKS19; BCGIKS20b] (resp.
PCF) for correlations over F3 could be used to guarantee that the pseudorandom bit µ
is the same across both the share of µ and 1− µ. However, even with a programmable
PCG (resp. PCF), Alice will obtain two distinct and independent shares, one for the µ
instance and one for the 1− µ instance, which prevents us from applying the template
we described above. To resolve this, we introduce the notion of a “doubly-programmable”
PCG (resp. PCF).

New tool: “Doubly-programmable” PCGs and PCFs. We observe that existing construc-
tions of programmable PCGs (resp. PCFs) can be adapted to provide “one-more-level”
of programmability by making the seed (resp. key) of one party sampled independently
of the correlation. This makes it possible to fix a seed/key k0 and then generate multiple
keys k1, k2 for two different programmable correlations C1 and C2, respectively. More
concretely, coming back to our use case, Alice can be given k0 which allows her to generate
a pseudorandom share x while Bob and Carol can be given k1 and k2, respectively, such
that:

Expand(k0)− Expand(k1) = µ and Expand(k0)− Expand(k2) = 1− µ.

Formally, we define such “doubly-programmable” PCGs and PCFs as being F-pro-
grammable, where (1) one of the seeds/keys can be sampled independently of the ultimate
correlation and (2) the correlation itself can be programmed to be some function of the
source of pseudorandomness. (In the above example, the programmed function in k2
maps x to 1− x.)

121

8. Compressing Pseudorandom Permutation Correlations

Challenges in generating bits over a field. Generating a pseudorandom bit in a larger
field has many applications beyond our use case for building a PCG for pseudorandom
permutations. In particular, such a correlation is very useful for efficient multi-party
computation protocols [IKNZ23; CS10; DFKNT06] as it enables efficient conversion of
secret shares from one field to another. However, despite this usefulness, there are no
constructions PCGs/PCFs for this target correlation. Moreover, we observe that such
a correlation can only be computed by high degree polynomial, making it difficult to
instantiate using known techniques, which are typically geared to degree-2 correlations.

To overcome this challenge, we show that in the case of F3, it is possible to generate
shares of a pseudorandom bit by evaluating a degree-2 polynomial, provided we settle for
a biased bit in F3. This observation forms the backbone of our PCG construction, which
we show can be instantiated by building off of existing PCGs for degree-2 correlations in
F3.

To realize a PCF for pseudorandom permutations, we resort to using homomorphic
secret sharing (HSS) [BGI16a] to evaluate a high-degree polynomial computing a PRF
outputting a single bit. While we can concretely reduce the degree of the evaluation
function by using tailored low-degree PRFs, our approach to constructing PCFs for
pseudorandom permutations does not fully get around the barrier described above.

8.2.3. Overview of our PCG construction
We now turn to explaining how we construct our PCG for permutations by constructing
an F-programmable PCG for pseudorandom bits.

Our starting point is existing PCG constructions for degree-2 correlations in F3, which
were recently constructed by Bombar et al.[BCCD23; BBCCDS24a] from the Quasi-
Abelian Syndrome Decoding (QASD) assumption and allow programming the output
correlation. In particular, we observe that this PCG construction can be upgraded using a
programmable distributed point function (DPF) [BGIK22] to realize an F -programmable
PCG for correlations in F3. In a nutshell, this follows directly from an observation made
by Boyle et al. [BGIK22], where they show that existing PCGs based on DPFs (which
includes the PCG of Bombar et al.[BBCCDS24a]) can be converted using a programmable
DPF such that the PCG seed k0 of one party can be generated independently of the
second seed k1. Moreover, the seed k0 is independent of the computed correlation, which
gives us all the necessary properties to obtain F-programmablilty.
From squares to bits. Using the F-programmable PCG for correlations in F3, we
show how to convert a pseudorandom degree-2 correlation into a biased pseudorandom
bit in F3. The main idea is to define a share of µ as a share of z2 (mod 3), for a
pseudorandom z ∈ F3. In particular, a share of z2 (mod 3), is always in the set {0, 1},
since 22 (mod 3) = 1. However, the value of z2 is biased towards 1. The reason for the
bias is that z2 is not evenly distributed over {0, 1} but is instead uniformly distributed over
the multiset {0, 1, 1} given that 22 = 1 (mod 3). This bias also translates to the resulting
permutation, making the resulting PCG share the same bias. Nonetheless, this still
represents a non-trivial PCG for permutations, which we show can be used in applications
of multi-round anonymous broadcast when coupled with a suitable randomness extractor.

122

8.3. Preliminaries

Putting things together. In summary, we show that we can extend the PCG of
Bombar et al.[BBCCDS24a] for degree-2 correlations over F3 to be F-programmable,
which then allows us to generate three PCG keys k0, k1, k2, which are distributed to Alice,
Bob, and Carol respectively, such that Alice and Bob obtain shares of a pseudorandom
“ϵ-biased” bit µ and Alice and Carol obtain shares of 1− µ (or vice versa), while keeping
Alice’s share the same in both cases. This then allows us to construct an “ϵ-biased” PCG
for permutations with ϵ = (1/6) bias. We describe this construction in Section 8.4.

8.2.4. Overview of our PCF construction
Now that we’ve described the PCG construction, we take a step back and observe that
if we instead have an F-programmable PCF for generating a pseudorandom bit in F3,
then we’d be able to avoid the bias in the construction from Section 8.2.3 and instantiate
the template directly. Specifically, we observe that homomorphic secret sharing (HSS)
coupled with a PRF in NC1 gives us a programmable PCF for a pseudorandom bit in
F3. Then, to upgrade this PCF to be F-programmable, we use the recent paradigm of
Couteau et al. [CMPR23] of “HSS with simulatable memory shares” which, informally
speaking, allows one of the parties to compute their memory share independently of
the function and immediately gives us F-programmability. Coupled with a PRF in
NC1, we get a mechanism for constructing a PCF for (unbiased) pseudorandom bits in
F3. We also show that if we assume specific low-degree PRF candidate, then we can
significantly reduce the number of HSS multiplications required, making the PCF closer
to being concretely practical. As an application of our PCF construction, we show an
immediate application to single secret leader election, where the party with the lowest
permutation value is elected as the leader without revealing themselves to the other
(possibly corrupted) parties.

8.3. Preliminaries

Notation. We let N denote the set of natural numbers. We denote a vector u using
bold lowercase letters and let u[i] denote the i-th coordinate of u. We denote by poly[](·)
the set of all polynomials and by negl[](·) any negligible function. We let x R← S denote
a uniformly random sample drawn from S. We let x← Adv denote assignment from a
(possibly randomized) algorithm Adv and x := y denote initialization of x to the value of y.
By an efficient algorithm Adv we mean that Adv is modeled by a (possibly non-uniform)
Turing Machine that runs in probabilistic polynomial time. We write D0 ≈c D1 to
mean that two distributions D0 and D1 are computationally indistinguishable to all
efficient distinguishers Adv and D0 ≈s D1 to mean that D0 and D1 are statistically
indistinguishable.

8.3.1. Homomorphic Secret Sharing
Homomorphic Secret Sharing (HSS) [BGI16a] can be seen as a distributed analogue to
homomorphic encryption. In contrast to the centralized model where a single server

123

8. Compressing Pseudorandom Permutation Correlations

computes on encrypted inputs, in HSS, shares of the input are distributed among
multiple parties, who then compute a share of the output through local homomormpic
computations.

Definition 8.1 (Homomorphic Secret Sharing [BGI16a]). Let n be a security parameter
and R be a finite ring. A Homomorphic Secret Sharing (HSS) scheme for a class of
programs P with input space I ⊆ R and share space S ⊆ R, consists of three efficient
(possibly randomized) algorithms HSS = (Setup, Input,Eval) such that:

• Setup(1n)→ (pk, (ekA, ekB)). Takes as input the security parameter n. Outputs a
public key pk and a pair of evaluation keys (ekA, ekB).

• Input(pk, x)→ ([[x]]A, [[x]]B). Takes as input the public key pk and an input x ∈ I.
Outputs a pair of HSS input shares ([[x]]A, [[x]]B).

• Eval(σ, ekσ, ([[x1]]σ, . . . , [[xn]]σ), P)→ ⟨y⟩σ. Takes as input the party identifier σ, an
evaluation key ekσ, a vector of n HSS input shares, and an n-input program P ∈ P .
Outputs a subtractive share of the output y = P (x1, . . . , xn) in share space S.

The above functionality must satisfy the following properties:
Correctness. For all security parameters n ∈ N, any n ∈ N, and any n-input program
P ∈ P with input space I ⊆ R, it holds that for any x1, . . . , xn ∈ I:

Pr


y = P (x1, . . . , xn) :

(pk, (ekA, ekB))← Setup(1n)
([[xi]]A, [[xi]]B)← Input(pk, xi)∀i ∈ [n]
⟨y⟩A ← Eval(A, ekA, ([[xi]]A)i∈[n], P)
⟨y⟩B ← Eval(B, ekB, ([[xi]]B)i∈[n], P)

y ← ⟨y⟩A − ⟨y⟩B


≥ 1− negl.

Security. For all efficient adversaries Adv, and any σ ∈ {A,B}, there exists a negligible
function negl[·] such that:

Pr


b′ = b :

(x0, x1, st)← Adv(1n)
(pk, (ekA, ekB))← Setup(1n)

b
R← {0, 1}

([[xb]]A, [[xb]]B)← Input(pk, xb)
b′ ← Adv(st, pk, ekσ, [[xb]]σ)


≤ 1

2 + negl.

HSS memory values. Let ⟨⟨x⟩⟩σ denote an intermediate “memory share” of an HSS
evaluation held by party σ. In existing HSS schemes (e.g., [BGI16a; CMPR23; DIJL23a;
FGJS17]) memory shares can be added together and multiplied with an HSS input share
to produce a new memory share. Also, there is additional efficient algorithm MemGen

124

8.3. Preliminaries

that takes as input an index σ ∈ [n], and evaluation key ekσ and an input x ∈ I, and
outputs a memory share ⟨⟨x⟩⟩σ of x.

Extended Evaluation. Moreover, HSS schemes support a so-called “extended evalua-
tion”, as given by [CMPR23. Lemma 1]. Informally, there is an additional evaluation
algorithm ExtEval that is similar to Eval but takes one additional input Mσ = ⟨⟨z⟩⟩σ—a
memory share of z ∈ I—and outputs a ⟨y⟩σ, such that upon reconstruction ⟨y⟩0 − ⟨y⟩1
one obtains the z-multiplied output z · P (x1, . . . , xn). We will make use of this multiply
our outputs by a z ∈ {−1, 1}.

More formally, there the syntax of ExtEval is as follows:

• ExtEval(σ, ekσ, ⟨⟨α⟩⟩σ, ([[x1]]σ, . . . , [[xn]]σ), P)→ ⟨y⟩σ. Takes as input an index σ, an
evaluation key ekσ, a memory share ⟨⟨α⟩⟩σ of α ∈ I and a vector of n HSS input
shares, and an n-input program P ∈ P . Outputs a subtractive share of the output
y = αP (x1, . . . , xn).

Correctness of this algorithm means that

Pr


y = z · P (x1, . . . , xn) :

(pk, (ekA, ekB))← Setup(1n)
([[xi]]A, [[xi]]B)← Input(pk, xi)∀i ∈ [n]

MA ← MemGen(A, ekA, z)
MB ← MemGen(B, ekB, z)

⟨y⟩A ← ExtEval(A, ekA,MA, ([[xi]]A)i∈[n], P)
⟨y⟩B ← ExtEval(B, ekB,MB, ([[xi]]B)i∈[n], P)

y ← ⟨y⟩A − ⟨y⟩B


≥ 1− negl,

i.e., if we run it like Eval, but with the additionally generated memory share of a z ∈ I,
we get a subtractive share of z · P (x1, . . . , xn).

Programmability of HSS memory values. Here, we follow the definition of [CMPR23.
Sect. 4.3].

Definition 8.2 (HSS with Simulatable Memory Values). Let HSS = (Setup, Input,Eval)
be an HSS scheme with input space I. Then, HSS is simulatable w.r.t. its memory values
if there are efficient algorithms Sim0, Sim1, where Sim0 takes as input 1n and outputs a
memory value M0, and Sim1 takes as input a memory value M0, an element z ∈ I, and
two keys ekA, ekB, and outputs a memory value M1. Then we want:

Simulation Correctness. For any security parameter n, and any z1, z2 ∈ I, we want
that correctness w.r.t. extended evaluation still holds when the memory values are

125

8. Compressing Pseudorandom Permutation Correlations

simulated, i.e.

Pr


y = z · P (x1, . . . , xn) :

(pk, (ekA, ekB))← Setup(1n)
([[xi]]A, [[xi]]B)← Input(pk, xi)∀i ∈ [n]

MA ← Sim0(1n)
MB ← Sim1(MA, z, (ekA, ekB))

⟨y⟩A ← ExtEval(A, ekA,MA, ([[xi]]A)i∈[n], P)
⟨y⟩B ← ExtEval(B, ekB,MB, ([[xi]]B)i∈[n], P)

y ← ⟨y⟩A − ⟨y⟩B


≥ 1− negl.

Simulation Security. There exists an efficient simulator S such that for all (pk, (ekA, ekB))
in the image of Setup, M1

∣∣∣∣∣∣ M0 ← Sim0(1n)
M1 ← Sim1(M0, z, (ekA, ekB))

 ≈c S(pk).

8.3.2. Programmable Function Secret Sharing and Distributed Point
Functions

Function secret sharing (FSS) [BGI15; BGI16b] is an analogue of HSS for sharing functions
instead of data. Concretely, FSS allows to split up a function f into shares k0, k1, such
that each share individually hides the function f . The shares can be locally evaluated
on an input x, such that the evaluations of both shares at the same x form subtractive
shares of f(x).

Definition 8.3 (Function Secret Sharing). Let F = {f : I → G} be a class of function
descriptions, where the description of each f specifies the input domain I and an Abelian
group (G,+) as the output domain. A (2-party) function secret sharing (FSS) scheme
for F is a pair of algorithms FSS = (FSS.Gen,FSS.Eval) with the following syntax:

• FSS.Gen(1n, f) is a PPT algorithm that given security parameter n and description
of f ∈ F outputs a pair of keys (K0,K1). We assume that the keys specify I and
G.

• FSS.Eval(b,Kb, x) is a polynomial-time algorithm that, given a key Kb for party
b ∈ {0, 1}, and an input x ∈ I, outputs a group element yb ∈ G.

The scheme should satisfy the following requirements:

Correctness. For any f ∈ F and x ∈ I, we have Pr[(K0,K1) $← FSS.Gen(1n, f) :
FSS.Eval(0,K0, x)− FSS.Eval(1,K1, x) = f(x)] = 1.

Security. Let f1, f2, . . . be any polynomial-size sequence of functions fi ∈ F . For
b ∈ {0, 1}, consider the following two experiments with a PPT simulator Sim:

126

8.3. Preliminaries

• Realb(1n): Run (k0, k1) $← FSS.Gen(1n, fn) and output kb

• Idealb(1n): Output kb = Sim(1n, Leak(fn))

We say that FSS is secure if for each b ∈ {0, 1}, there exists Sim such that, for any
non-uniform adversary Adv of size poly, Pr[Adv(Realb(1n)) = 1]− Pr[Adv(Idealb(1n)) =
1] ≤ negl.

In the constructions we use, the leakage function Leak : {0, 1}∗ → {0, 1}∗ is given by
Leak(fn) = (I,G), namely it outputs a description of the input and output domains of f .

Remark 5 (Pseudorandomness of FSS Outputs). In some of our constructions, we rely
on a property that outputs of FSS.Eval are indistinguishable from random, when the
FSS keys remain secret. This property can be obtained generically, by including a PRF
key in each FSS key and having each party add the same PRF evaluation to its output.
However, we note that the property is already achieved by all the FSS constructions we
use.

Distributed Point Functions and FSS for Sums of Point Functions.

Let N be a domain size, G an abelian group, α ∈ [N], and β ∈ G. A point function is
a function fα,β : [N] → G that evaluates to 0 on all inputs x ̸= α, and fα,β(x) = β if
x = α.

An FSS scheme for the class of point functions of domain size N is known as a
distributed point function [GI14]. As in previous work [BCGIKS20b; BCCD23], it will
be convenient for our constructions to use FSS for the class of functions that can be
described as a sum of t point functions.

Definition 8.4 (FSS for sum of point functions (SPFSS)). Let N be a domain size, G an
abelian group, α ∈ [N], and β ∈ G. A point function is a function fα,β : [N]→ G defined
by fα,β(x) = 0 whenever x ̸= α, and fα,β(x) = β if x = α. For S = (s1, . . . , st) ∈ [N]t
and y = (y1, . . . , yt) ∈ Gt, the sum of point functions fS,y : [N]→ G is defined as

fS,y(x) =
t∑

i=1
fsi,yi(x).

An SPFSS scheme is an FSS scheme for the class of sums of point functions.

Programmable FSS.

We use 2-party FSS schemes with a special programmability property, meaning that one of
the two keys can be sampled independently of the function f being shared. The following
definition extends the concept of programmable distributed point function [BGIK22] to
programmable FSS for general functions.

Definition 8.5 (Programmable FSS). We say that an FSS scheme (FSS.Gen,FSS.Eval)
is programmable if FSS.Gen can be split into two algorithms Gen0 and Gen1 with the
following syntax:

127

8. Compressing Pseudorandom Permutation Correlations

• Gen0(1n, I,G)→ k0. On input the security parameter and input/output domains
of the function fn, this samples a key k0.

• Gen1(k0, fn)→ k1. on input key k0 and the function fn, this generates a key k1.

It is easy to see that a programmable DPF immediately also implies programmable
FSS for sums of t point functions.

Boyle et al. [BGIK22] construct a programmable distributed point function for any
domain size N = N(n) ∈ poly based on a pseudorandom generator. Their construction
starts by building a simple and efficient, but leaky, programmable DPF, and then
upgrades this to a fully secure construction through privacy amplification techniques.
While the final construction is not practical, in Section 8.6 we show how to leverage the
practical, leaky version of their DPF in our construction to build a concretely efficient
F-programmable PCG.

8.3.3. Pseudorandom Correlation Generators

A pseudorandom correlation generator, or PCG, is a way of distributing short seeds to
a set of parties, which can later be expanded to produce a large amount of correlated
randomness. The type of correlated randomness obtained is specified as a correlation
generator, which typically has the reverse-samplable property below. In the following
definitions, we adapt the definition of n-party PCG [BCGIKS19] to the case where only
one party is corrupted. This fits the two-party and three-party constructions we present.

Definition 8.6 (Reverse-sampleable n-Correlation Generator). A PPT algorithm C is
called a reverse sampleable n-correlation generator, if on input 1n it outputs elements in
{0, 1}ℓ × . . .× {0, 1}ℓ ∈ ({0, 1}ℓ)n for some length parameter ℓ ∈ poly, and there exists a
PPT algorithm RSample such that for any σ ∈ [n], the correlation obtained via: (R′1, . . . , R′n)

∣∣∣∣∣∣ (R1, . . . , Rn) $← C(1n)
R′σ := Rσ, (R′i)i∈[n]\{σ}

$← RSample(σ,Rσ)


is computationally indistinguishable from C(1n).

Definition 8.7 (Pseudorandom n-Correlation Generator). Let C be a reverse-sampleable
n-correlation generator. A pseudorandom correlation generator (PCG) for C is a pair of
algorithms (PCG.Gen,PCG.Expand) with the following descriptions:

• PCG.Gen(1n) is a PPT algorithm that given a security parameter n, outputs seeds
(k1, . . . , kn).

• PCG.Expand(σ, kσ) is polynomial time algorithm that given a party index σ ∈ [n]
and a seed kσ, outputs a bit string Rσ ∈ {0, 1}ℓ.

The algorithms (PCG.Gen,PCG.Expand) should satisfy the following:

128

8.3. Preliminaries

Correctness. The correlation obtained via:

{(R1, . . . , Rn)|(k1, . . . , kn) $← PCG.Gen(1n), Rσ ← PCG.Expand(σ, kσ) for σ ∈ [n]}

is computationally indistinguishable from C(1n)

Security. For any i ∈ [n], the following two distributions are computationally indistin-
guishable: (ki, (Rj)j ̸=i)

∣∣∣∣∣∣ (k1, . . . , kn) $← PCG.Gen(1n)
Rj ← PCG.Expand(j, kj) : j ̸= i


and (ki, (Rj)j ̸=i)

∣∣∣∣∣∣∣∣∣
(k1, . . . , kn) $← PCG.Gen(1n)

Ri ← PCG.Expand(i, ki)

(Rj)j ̸=i
$← RSample(i, Ri)


where RSample is the reverse sampling algorithm for the correlation C.

8.3.4. Pseudorandom Correlation Functions

A PCF [BCGIKS20a] can be seen as a PCG where each output of the target correlation
can be computed “on-demand”, instead of being expanded all at once. Furthermore, as
in a PRF, the number of possible outputs (that is, the domain size) may be exponential
in the security parameter.

The syntax of a PCF consists of a key generation algorithm PCF.KeyGen, which outputs
a set of correlated keys, as well as a PCF.Eval algorithm that uses a key to compute a
single PCF output.

The security game and the formal definition of a PCF follow.

Exppr
Adv,N,0(n):

for i = 1 to N(n):
xi

R← {0, 1}ℓ

(R(i)
1 , . . . , R

(i)
n)← C(1n)

b′ ← Adv(1n, (xi, R
(i)
1 , . . . , R

(i)
n)i∈[N(n)])

return b′

Exppr
Adv,N,1(n):

(k1, . . . , kn)← PCF.KeyGen(1n)
for i = 1 to N(n):
xi

R← {0, 1}ℓ
for σ ∈ [n]:
R

(i)
σ ← PCF.Eval(σ, kσ, xi)

b′ ← Adv(1n, (xi, R
(i)
1 , . . . , R

(i)
n)i∈[N(n)])

return b′

Figure 8.1.: Pseudorandom C-correlated outputs of a PCF.

Definition 8.8 (Pseudorandom Correlation Function [BCGIKS20a]). Let n be a security
parameter, C be a reverse-sampleable n-correlation with output length ℓ(n) ∈ poly,

129

8. Compressing Pseudorandom Permutation Correlations

Expsec
Adv,N,σ,0(n):

(k1, . . . , kn)← PCF.KeyGen(1n)
for i = 1 to N(n):
xi

R← {0, 1}ℓ

R
(i)
σ ← PCF.Eval(σ, kσ, xi)

(R(i)
σ)σ ̸=σ ← RSample(1n, σ, R

(i)
σ)

b′ ← Adv(1n, σ, kσ, (xi, (R(i)
σ)σ ̸=σ)i∈[N(n)])

return b′

Expsec
Adv,N,σ,1(n):

(k1, . . . , kn)← PCF.KeyGen(1n)
for i = 1 to N(n):
xi

R← {0, 1}ℓ
foreach σ ∈ [n] \ {σ}:
R

(i)
σ ← PCF.Eval(σ, kσ, xi)

b′ ← Adv(1n, σ, kσ, (xi, (R(i)
σ)σ ̸=σ)i∈[N(n)])

return b′

Figure 8.2.: Security of game for a PCF. Here, RSample is the algorithm for reverse sampling
the correlation C, as defined in Definition 8.6.

and n ≤ k = k(n) ∈ poly be an input length. A Pseudorandom Correlation Function
(PCF) for C is defined by a pair of algorithms (PCF.KeyGen,PCF.Eval) with the following
functionality:

• PCF.KeyGen(1n)→ (k1, . . . , kn). Takes as input the security parameter n. Outputs
an n-tuple of keys (k1, . . . , kn).

• PCF.Eval(σ, kσ, x) → Rσ. Takes as input σ ∈ [n], a key kσ, and input string
x ∈ {0, 1}k. Outputs a string Rσ ∈ {0, 1}ℓ.

We say PCF = (PCF.KeyGen,PCF.Eval) is a (weak) PCF for the correlation C, if the
following properties hold:

Correctness / Pseudorandom C-correlated outputs. For every σ ∈ [n], all efficient
adversaries Adv, and all N ∈ poly, there exists a negligible function negl[] such that for
all sufficiently large n,∣∣∣Pr[Exppr

Adv,N,0(n) = 1]− Pr[Exppr
Adv,N,1(n) = 1]

∣∣∣ ≤ negl,

where Exppr
Adv,N,b(n), for b ∈ {0, 1}, is as defined in Figure 8.1. In particular, the adversary

is given access to N(n) samples.

Security. For all σ ∈ [n] and all efficient adversaries Adv, there exists a negligible
function negl[] such that for all sufficiently large n,

∣∣∣Pr[Expsec
Adv,N,σ,0(n) = 1]− Pr[Expsec

Adv,N,σ,1(n) = 1]
∣∣∣ ≤ negl,

where Expsec
Adv,N,σ,b(n), for b ∈ {0, 1}, is as defined in Figure 8.2 (again, with the adversary

given N(n) samples).

130

8.4. Constructions

8.4. Constructions
In this section, we present the framework for building a PCG/PCF for pseudorandom
permutations from a PCG/PCF for pseudorandom bits and then instantiate it from the
QA-SD assumption and HSS. In Section 8.4.1, we first describe the F-programmability
definition that we will make use of in our constructions.

8.4.1. Doubly-Programmable PCGs
We now introduce our notion of doubly-programmable PCGs. We consider the following
class of two-party correlations, where the parties’ outputs form subtractive shares of
some random variable.

Definition 8.9 (Two-party subtractive correlation generator). Let (G,+) be an abelian
group and ℓ, n ∈ Z be functions of n. Further, let F = {fn:Gℓ → Gn}n be a family of
functions. An subtractive correlation generator for F is a correlation generator CF , such
that CF(1n) uniformly samples X ← Fℓ and outputs (R0, R1) ∈ Fn × Fn, such that R0
and R1 are distributed uniformly, conditioned on R0 −R1 = fn(X).

A doubly-programmable PCG allows PCG keys to be generated in a special way, such
that both (1) the randomness fn(X), and (2) the R0 output of party 0, can be reused
across multiple instances. Furthermore, we allow a small “tweak” to be applied to fn(X)
such that it can be modified slightly when reusing it. We formalise this notion by using a
special seed from which the randomness in fn(X) is derived, and an additional input to
party 1’s key generation algorithm for performing the tweak specified by some function
from a family F .

Definition 8.10 (F-Programmable). A two-party PCG (resp. PCF) for an additive
correlation is F-programmable for a class of functions F , if PCG.Gen (resp. PCF.Gen)
can be split into two distinct algorithms:

• Gen0(1n): a PPT algorithm that on input 1n, outputs a key k0 ∈ {0, 1}∗

• Gen1(k0, seed, f): a deterministic algorithm that on input a key k0, seed ∈ {0, 1}n
and function f ∈ F , samples and outputs a second key k1.

We require the following correctness property, for any f ∈ F :

Pr


R0 −R2 = f(R0 −R1) :

seed $← {0, 1}n

k0
$← PCG.Gen0(1n)

k1 ← PCG.Gen1(k0, seed, id)
k2 ← PCG.Gen1(k0, seed, f)

Rj ← PCG.Expand(kj), j ∈ {0, 1, 2}


≤ 1− negl

The PCG.Gen (resp. PCF.Gen) algorithm then simply runs Gen0, followed by Gen1 on
input a random seed and f as the identity function, to output a pair of keys (k0, k1).

131

8. Compressing Pseudorandom Permutation Correlations

8.4.2. Permutation PCG From PCG for Biased Bits

In this section, we present our generic template for building a three-party PCG for
permutation correlations, given a special form of two-party PCG for secret-shared, biased
random bits.

Definition 8.11 (Two-party, ε-biased bits correlation generator). An ε-biased bits
correlation generator is a subtractive correlation generator C (from Definition 8.9),
such that C(1n) samples a vector x ← {0, 1}ℓ where each element xi is sampled from
Bernoulli(1/2 + ε) and outputs (R0,R1) ∈ Zℓ

q × Zℓ
q, such that the Ri’s are distributed

uniformly, conditioned on R0 −R1 = x.

Definition 8.12 (D-biased permutation correlation generator). An D-biased permutation
correlation generator is a correlation generator that samples ℓ permutations (π1, . . . , πℓ)←
Dℓ where D is a distribution on the set of all permutations on l elements Sl. It outputs
R1, . . . ,Rℓ where Ri(j) = πj [i], meaning that in the j-th position of Ri there is the i-th
element of permutation πj .

We remark that this correlation is reverse-sampleable, as given by the following lemma:

Lemma 8.1. Let m, l ∈ N and C be a D-biased permutation correlation generator, for
some efficiently sampleable distribution D on Sl. Then, C is reverse-sampleable.

Proof. For this, we need to show that there is an efficient algorithm RSample that takes
as input a party index σ and their correlation sample Rσ =: (e1, . . . , eℓ) with ei ∈ [l],
and outputs a list of samples (Ri)i ̸=σ that fulfills Definition 8.6. RSample proceeds by
rejection sampling of D as follows. For each i ∈ [m] it samples a permutation π using
D, until π−1(i) = ei. Note that the probability for each permutation assigned by D is
constant, so this process is efficient. Also clearly, the output is identically distributed to
the output of C. ■

When we build a D-biased correlation generator based on ε-biased bits, this will give
the following distribution Dε on S3, the set of permutations on F3. It builds a permutation
π by randomly sampling a biased bit µ R← Bernoulli(1/2 + ε), and one uniformly random
index i R← F3 for π[0], and then from the remaining two choices F3 \{i}, assign the smaller
one to π[1], if µ = 1, and the larger one, otherwise. Assign to π[2] the remaining option.

Theorem 8.2. Suppose that (PRBits.Gen0,PRBits.Gen1,PRBits.Expand) is an F-pro-
grammable PCG for ε-biased bits for the function class F = {id, (x 7→ −x)}, for some
ε ∈ [0, 1/2]. Then, the construction in Figure 8.3 is a PCG for Dε-biased, three-party
permutation correlations, where Dε is the distribution on S3 given above.

Proof. We argue for each property in turn:

Correctness. Let (k0, k1, k2) be as output by PCG.Gen(1n), and Ri ← PCG.Expand(i, ki),
i.e. define R′i = PRBits.Expand(i, ki) for i ∈ {0, 1, 2} and then, we have R0 = R′0,
R1 = (2, . . . , 2) +R′1, R2 = (1, . . . , 1) +R′2.

132

8.4. Constructions

Now, the R′i denote the original subtractive shares of the bit vectors as output by
PRBits.Expand(i, ki). Then, by construction, R′0 − R′1 = (µ1, . . . , µℓ) forms a vector of
ε-biased bits, and R′0−R′2 = (−µ1, . . . ,−µℓ), by F -programmability (cf. Definition 8.10).
Let k ∈ [ℓ], then R′1[k] = R′0[k]−µk and R′2[k] = R′0+µk. Note that R0[k]+R1[k]+R2[k] =
R′0[k] + R′1[k] + R′2[k] = R′0[k] + (R′0[k] − µk) + (R′0 + µk) = 0. Hence, they form an
additive sharing of zero for each k. Also, observe that R0[k], R1[k], R2[k] are pairwise
distinct, hence they form a permutation.

Using the pseudorandomness of the PCG output, R0 is a fresh random share in F3,
and hence, R0 is computationally close to uniform over F3, as in Dε. Then, the two
possibilities for R1 are exactly determined by the ε-biased bit as generated by PRBits.
This shows that it is indistinguishable from a sample of Dε for each k ∈ [ℓ].
Security.

We prove security via a sequence of hybrid arguments.
Hybrid H0. This hybrid corresponds to the (ki, (Rj)j ̸=i) as computed in Figure 8.3.
Hybrid H1. In this hybrid, we reverse sample R′j for j ̸= i from R′i and compute (Rj)j ̸=i

as computed in Figure 8.3.
H1 ≈c H0 by the security of the PRBits PCG.

Hybrid H2. In this hybrid, we change how the outputs (Rj)j ̸=i are computed. In particular,
we first sample uniformly random bits (µ1, . . . , µℓ). Then, we proceed in one of three
cases: (1) if i = 0 we let R1 := R′0 + 2− (µ1, . . . , µℓ) and let R2 := R′0 + 1 + (µ1, . . . , µℓ),
(2) if i = 1 we let R0 := R′1 − 2 + (µ1, . . . , µℓ) and let R2 := R′0 + 1 + (µ1, . . . , µℓ), or (3)
if i = 2 we let R1 := R′0 + 2− (µ1, . . . , µℓ) and let R0 := R′2 − 1− (µ1, . . . , µℓ).
H2 ≈c H1 by the pseudorandomness property of the PRBits PCG.

Hybrid H3. In this hybrid, we reverse sample (Rj)j ̸=i.
H3 ≈c H2. In particular, note that in H2, the keys kj ’s for j ̸= i are no longer used to

compute the outputs. Therefore, by the correctness of the reverse sampling algorithm,
the two hybrids are identical.

■

Obtaining a PCF instead of PCG.

This construction can be easily extended to obtain a pseudorandom correlation function,
if we start with a two-party PCF for ε-biased bits with F-programmability instead of a
PCG.

8.4.3. Programmable PCG for (1/6)-Biased Bits from Quasi-Abelian
Syndrome Decoding

We now show how to instantiate the previous template, by giving a construction of
a programmable PCG for ε-biased bits, where ε = 1

6 , based on the hardness of the
quasi-abelian syndrome decoding problem [BCCD23].

133

8. Compressing Pseudorandom Permutation Correlations

PCG for permutation correlations over F3

Gen(1n)
1 : k0 ← PRBits.Gen0(1n)

2 : seed R← {0, 1}n

3 : k1 ← PRBits.Gen1(k1, seed, f1 = id)
4 : k2 ← PRBits.Gen1(k1, seed, f2 = (x 7→ −x))
5 : return (k0, k1, k2)

Expand(i, ki)
1 : R′

i = PRBits.Expand(i, ki)
2 : if i = 0: return Ri := R′

i

3 : if i = 1: return Ri := (2, . . . , 2) +R′
i

4 : else return Ri := (1, . . . , 1) +R′
i

Figure 8.3.: PCG for permutation correlations over F3

8.4.3.1. QA-SD Background.

The main motivation for quasi-abelian syndrome decoding is to obtain a syndrome
decoding problem over a ring structure R, where R is isomorphic to m copies of Fq for
some large m. Using a cyclotomic polynomial ring R = Fq[X]/f(X) as in ring-LWE or
ring-LPN, this can be done only for q = Ω(m). Instead, quasi-abelian syndrome decoding
allows us to use any q ≥ 3.

Let G be a finite abelian group of order N . We define a ring R as the group algebra of G
with coefficients in the finite field Fq, that is, the set Fq[G] of formal linear combinations:

Fq[G] :=

∑
g∈G

agg | ag ∈ Fq


Ring multiplication is defined by the convolution:∑

g∈G
agg

∑
g∈G

bgg

 :=
∑
g∈G

∑
h∈G

ahbh−1g

 g
The group algebra Fq[G] is isomorphic to the vector space FN

q via the map ϕ :∑N−1
i=0 aigi 7→ (a0, . . . , aN−1). This allows us to define the weight of an element a ∈ Fq[G]

as the Hamming weight of ϕ(a). (Note that the weight is independent of the ordering of
the group G chosen in the definition of ϕ.)

Definition 8.13 (Decisional quasi-abelian syndrome decoding). Given a target weight t
and compression paramater c, let Dt(Fq[G]) be a noise distribution that samples weight-t

134

8.4. Constructions

elements of Fq[G]. The decisional QASDt,c problem for Dt is to distinguish between the
following two distributions with noticeable advantage:

• (a′, u), where a′ $← Fq[G]c−1, u
$← Fq[G]

• (a′, ⟨a, e⟩), where a = (1,a′) and a′ $← Fq[G]c−1, e $← Dt(Fq[G])c

As in prior works [BCCD23], to improve efficiency we can use a regular noise distribution
where each weight-t vector is divided into N/t consecutive blocks of weight-1.

Instantiating the group algebra. Following [BCCD23], we can instantiate G with a
direct product of cyclic groups ∏N

i=1 Z/(q − 1)Z. This implies that Fq[G] is isomorphic
to Fq[X1, . . . , XN]/(Xq−1

1 − 1, . . . , Xq−1
N − 1) via an efficiently-computable isomorphism,

and we have
∣∣Fq[G]

∣∣ = (q − 1)N .
Let QA-Evalq,N : Fq[G]→ F(q−1)N

q be the map takes an element of the group algebra,
viewed as a multivariate polynomial in Fq[X1, . . . , XN]/(Xq−1

1 −1, . . . , Xq−1
N −1), and eval-

uates it at every possible point. That is, QA-Evalq,N (f) =
(
f(x1, . . . , xN)

)
(x1,...,xn)∈{0,...,q−1}N .

Since QA-Eval is a ring homomorphism, for any f, g, h ∈ Fq[G], it holds that

QA-Evalq,N (fg + h) = QA-Eval(f) ∗ QA-Eval(g) + QA-Eval(h)

where ∗ denotes the entry-wise product. This allows us to directly convert additive shares
of a product over Fq[G] into a vector of shares of (q − 1)N products over Fq.

8.4.3.2. Construction.

We want to give the parties shares of a random square x2 ∈ F3. By choosing x = ⟨a, e⟩,
as in the QASD assumption, then we can distribute shares of x2 to two parties by giving
out shares of the tensor product vector e ⊗ e. Since each ei ∈ Fq[G] is t-sparse, the
product eiej is at most t2-sparse, and can be shared using FSS for a sum of t2 point
functions. We need to also achieve the F-programmability feature, so that instead of
shares of x2, we may additionally distributed shares of f(x2) for some function f ∈ F .
We will allow F to be the class of linear maps from Fq → Fq (applied to each coordinate
of x2 independently, viewing the group algebra as a vector space over Fq). To do this, it
suffices to tweak the non-zero values of each tensored noise terms eiej (denoted bi ⊗ bj

in Figure 8.4), applying f to each entry. Since the shares of x2 obtained in the Expand
algorithm are computed as a linear function of the shares of the tensor product, this
results in the same linear map being applied to x2.

Theorem 8.3. Assume that SPFSS is a secure FSS scheme for sums of point functions
and that the QA-SD assumption holds. Then, the protocol described in Figure 8.4 is an
1/6-biased bits correlation generator over F3.

Proof. We prove each property in turn.

Correctness. We prove correctness via a hybrid argument.
Let ei = ∑

j∈[0,t) bi[j]Ai[j].

135

8. Compressing Pseudorandom Permutation Correlations

Construction PRBits

Parameters: Noise weight t = t(λ), compression factor c, field F3.
A programmable SPFSS scheme SPFSS = (SPFSS.Gen0, SPFSS.Gen1,SPFSS.Eval)

Public Input: c− 1 vectors over F3, corresponding to the output
of Eval(ai) for uniformly random a = (1, a1, . . . , ac−1).

PRBits.Gen0(1n, seed)
1 : foreach i, j ∈ [0, c):

2 : (Ki,j
0) $← SPFSS.Gen0(1n)

3 : Let k0 = ((Ki,j
0)i,j∈[0,c))

4 : Output k0

PRBits.Gen1(seed, k0, f)
1 : foreach i ∈ [0, c):

2 : Ai $← (g1, . . . , gt)gi∈G, bi $← (F∗
3)t � Using randomness from seed

3 : foreach i, j ∈ [0, c):

4 : (Ki,j
1) $← SPFSS.Gen1(1n,Ai ⊗Aj , f(bi ⊗ bj))

5 : Let k1 = ((Ki,j
1)i,j∈[0,c))

6 : Output k1

PRBits.Expand(σ, kσ)
1 : For i, j ∈ [0, c):
2 : uσ,i+cj ← SPFSS.Eval(σ,Ki,j

σ)
3 : zσ ← ⟨a ⊗ a,uσ⟩
4 : Output QA-Eval3,N (zσ)

Figure 8.4.: PCG for biased bits over F3

136

8.4. Constructions

Hybrid H0. In this hybrid, we define z0 = ⟨a ⊗ a,u0⟩, z1 = ⟨a ⊗ a,u1⟩ as computed in
the real protocol execution and output (z0, z1).

Hybrid H1. In this hybrid, instead of computing u1 with SPFSS.Eval, we replace u1 with
u0 − e⊗ e and compute z1 ← ⟨a ⊗ a,u0 − e⊗ e⟩
H1 ≈c H0 by the SPFSS correctness property.

Hybrid H2. In this hybrid, we replace u0 with a randomly sampled ũ0. Compute u1
and z0, z1 as before using the new ũ0. We have u1 = ũ0 − e⊗ e, z0 = ⟨a ⊗ a, ũ0⟩, and
z1 = ⟨a ⊗ a, ũ0 − e⊗ e⟩
H2 ≈c H1 by the pseudorandomness of the outputs of FSS.Eval (cf.Remark 5).

Hybrid H3. Here, we compute the output z1 as z0 − ⟨a, e⟩2. This output is identically
distributed to the previous hybrid, since in H2 we have:

z1 = ⟨a ⊗ a, ũ0⟩ − ⟨a ⊗ a, e⊗ e⟩ = z0 − ⟨a, e⟩2

Hybrid H4. Here, we sample z0, x
$← Fq[G] uniformly at random and compute z1 = z0−x2.

We have H4 ≈c H3, due to the QASD assumption which says that x = ⟨a, e⟩ is
indistinguishable from random.

Finally, we observe that this distribution is equivalent to a sample from the ideal
1
6 -biased bits correlation generator, as each F3 component of x2 is zero with probability
1
3 and one with probability 2

3 .

Security. Security is argued as a sequence of hybrid arguments. We use σ = 1 and note
that the case for σ = 0 is symmetric. We want to show that:

{(k1, x, z0)} ≈c

 (k1, x̃, z̃0)

∣∣∣∣∣∣ x̃
$← F3

z̃0 = x̃2 + z1

 .
Hybrid H0. This hybrid corresponds to the (k1, x, z0) computed as in the real protocol.

Hybrid H1. In this hybrid, we replace all the FSS keys Kij
1 in k1 with simulated keys.

H0 ≈c H1 via a straightforward hybrid argument replacing each of the FSS keys
one-by-one with a simulated key, and relying on the correctness and security of the FSS
scheme.

Hybrid H2. In this hybrid, we sample x̃ at random instead of computing is using the FSS
key Kij

1 .

H1 ≈c H2 by the QA-SD assumption.

Hybrid H3. In this hybrid, we undo the changes made in H1 and switch back to the
original FSS keys.

H3 ≈c H2 via a straightforward hybrid argument replacing each of the FSS keys
one-by-one, and relying on the correctness and security of the FSS scheme.

137

8. Compressing Pseudorandom Permutation Correlations

At this point, we have that H3 is distributed exactly as (k1, x̃, z̃0), concluding the
proof.

Programmability. The construction is programmable (that is, we have z0 − z2 =
f(z0 − z1)) due to the programmability of the FSS. In particular, this follows from the
fact that by scaling the non-zero values for the point functions defined by bi ⊗ bi by
some constant ∆ ∈ Fq at key generation time, the secret shared output becomes a share
of ∆ · x2 instead of x2. The programmability of the FSS ensures that we then obtain
the necessary F-programmability feature, since we can keep the share z0 independent
(generated by Gen0) and get z0 − z2 = ∆(z0 − z1). This immediately generalizes to linear
functions f .

In addition, as was discussed earlier, for random x ∈ F3, x2 is 1 for x = 1, 2 (2/3 of the
times) and 0 for x = 0 (1/3 of the times). This means that x2 is distributed according
to Bernoulli(1/2 + 1/6) over F3 and so our construction is a 1/6-biased bits correlation
generator over F3. ■

8.4.4. Unbiased PCF for Permutations Constructions

In this section, we describe a construction that is based on HSS with simulatable memory
shares to obtain a PCF for unbiased permutation correlations.

For this, let P be an HSS program for a PRF with 1-bit output. Denote it by Fκ,
where κ is the PRF key. To run it, we need HSS shares of the key, generated via
([[κ]]A, [[κ]]B)← HSS.Input(pk, κ) [BCMPR24]. Then, Alice gets [[κ]]A, and both, Bob and
Carol get [[κ]]B.

Now, when Alice and either Bob or Carol would run Eval(σ, ekσ, [[κ]]σ, Px), they obtain,
upon reconstruction, a pseudorandom bit µ = F.Eval(κ, x). Now, remember that we want
Alice to obtain a share that, together with the share of Bob, is a share of a pseudorandom
bit µ, and, together with the share of Carol, is a share of 1 − µ. Hence, we want to
compute α · µ, where in one case, α = 1, and in the other case, α = −1. Then, it suffices
that Carol subtracts 1 from her subtractive share, thereby converting it to a share of
1− µ.

To do this, we can provide the α as memory shares and evaluate Px for an PRF input
x, using our extended evaluation (cf. Section 8.3.1). And, as we want to keep Alice’s
share fixed, we do so by using memory shares MA,MB that are simulatable, i.e. Alice
uses MA ← Sim0(1n) and to get a memory share, whose value is not yet fixed, but can
be determined by generating a share using Sim1.

Later, this is programmed twice, to encode certain αB ∈ I but also αC ∈ I using
Sim1, for use with Bob and Carol, respectively. Then, ExtEval will output a share of
αp ·F.Eval(κ, x) for p ∈ {B,C}, where F.Eval(κ, x) is pseudorandom bit as output by the
PRF. As motivated above, we choose αB = 1 and αC = −1.

Theorem 8.4. Let HSS = (Setup, Input,Eval) be an HSS with simulatable memory shares
(with algorithms Sim0, Sim1) and with input space I = F3 and share space S = F3.
Moreover, let F be a pseudorandom function and for x ∈ {0, 1}k, let Px be the HSS
program that runs F.Eval(·, x) when given the PRF key as input. Then, PCF of Figure 8.5

138

8.4. Constructions

is a PCF for the 3-correlation generator C given by Definition 8.12, where D is the
uniform distribution over S3 and m ∈ N is the output length of F . (For simplicity of
notation, we identify S3 as the set of permutations over the elements of F3.)

Proof. We show each property in turn.

Correctness. Let (k0, k1, k2) as output by PCF.Gen(1n). Let ki be parsed as (pk, [[κ]]i, eki,M
i)

for i ∈ {0, 1, 2}. Moreover, let Ri ← PCF.Eval(i, ki, x), for some x ∈ {0, 1}k. More con-
cretely,

R0 = ExtEval(0, ekA,MA, [[κ]]A, Px)
R′1 = ExtEval(1, ekB,MB, [[κ]]B, Px)
R′2 = ExtEval(2, ekB,MC , [[κ]]B, Px)− 1
R1 = 2 +R′1

R2 = 2 +R′2.

We need to show that (R0, R1, R2) ∈ F3
3 as obtained in this manner, is a uniformly

random permutation over the elements of F3.
By the simulation correctness of the extended evaluation, we know that by construction,

with overwhelming probability, R0 − R′1 = F.Eval(κ, x) ∈ {0, 1}, and R0 − R′2 = 1 −
F.Eval(κ, x) ∈ {0, 1}. Also, because the distinguisher only gets the 3-tuple, by the
security of the HSS scheme, they cannot learn anything about κ, and hence, F.Eval(κ, x)
is computationally indistinguishable from a random bit. Then, using R′1 = R0 − µ, and
R′2 = R0 +µ− 1, for µ := F.Eval(κ, x), we get R0 +R1 +R2 = R0 + (2 +R′1) + (2 +R′2) =
R0 + 2 + (R0 − µ) + (R0 + 1 + µ) = 3R0 + 2− µ+ 1 + µ = 0 (mod 3), i.e., the R’s form
an additive sharing of zero, as required.

Next, we show that they are pairwise distinct. This is because R0 = R1 implies
R0 −R′1 = µ = 2, which is false. (The other cases are implied and/or similar.) Hence,
(R0, R1, R2) forms a permutation. It remains to show that it is uniformly generated.
As R0 is a fresh random subtractive share, it follows if the HSS satisfies the additional
property that the marginal distribution of an output share is computationally close to
random. While this does not follow automatically from the HSS definition, it is folklore
any HSS can be trivially modified to satisfy this slightly stronger property by letting
HSS.Input additionally output a fresh PRF key (for a PRF with range F3) in both input
shares, and letting HSS.Eval sum the PRF output (evaluated on the RMS program
viewed as a string) to its output. This preserves correctness (the PRF evaluations
cancel out when subtracting the shares) and guarantees that each share is individually
pseudorandom. With this change, R0 is computationally close to uniform over F3. Then,
given this R0, we show that the two possibilities for R1 are exactly determined by the
pseudorandom bit of the PRF, so it is indistinguishable from being uniformly chosen
from F3 \ {R0}.

Security. Here, we show PCF security for each σ ∈ {0, 1, 2}. Note that the proof is
different for the different σ’s, because for σ = 0, the memory share MA that is part of

139

8. Compressing Pseudorandom Permutation Correlations

the key does not need to be simulated. We prove the case where σ = 0. The other cases
follow via an analogous proof.

Hybrid H0. This hybrid consists of Expsec
A,N,σ,1(n) game as defined in Figure 8.2.

Hybrid H1. In this hybrid, we change how the output R(i)
1 of Bob is computed (for all

i ∈ [N]). First, we reconstruct the PRF key κ from the HSS input shares contained in
the PCF keys and then evaluate the PRF on input xi to get the output µi. Then, we use
Alice’s output R(i)

0 to compute Bob’s share R(i)
1 as R(i)

0 + 2− µi.

We note that H1 is identical to H0, since the change is merely syntactic. Now, in H1,
Bob’s share is no longer computed using k1.

Hybrid H2. In this hybrid, we change how the output of Carol is computed. As before,
we first reconstruct the PRF key κ from the HSS input shares contained in the PCF
keys and then evaluate the PRF on input xi to get the output µi. Then, we use Alice’s
output R(i)

0 to compute Carol’s share R(i)
1 as R(i)

0 + 1 + µi.

We note that H2 is again identical to H1, since the change is merely syntactic. Now,
in H2, Carol’s share is no longer computed using k2.

Hybrid H3. In this hybrid, we replace the HSS input shares of κ with an input share of 0.

H3 ≈c H2 by the security of HSS.

Hybrid H4. In this hybrid, we replace the pseudorandom bit µi (as output in H3 using
the PRF) with a uniformly random bit.

H4 ≈c H3 by the pseudorandomness of the PRF.

Hybrid H5. This hybrid consists of Expsec
A,N,σ,0(n) game as defined in Figure 8.2.

H5 is identical to H4 given that in H4, we already sample R(i)
1 and R

(i)
2 entirely from

Alice’s output R(i)
0 .

■

8.5. Applications

In this section, we describe two applications of our constructions. The first application is
for slot assignment in Dining Cryptographer networks (DC-nets). The second application
is to single secret leader election. While currently limited to the three party setting,
future constructions of PCGs and PCFs for pseudorandom permutations capable of
handling more parties would automatically extend these applications to a multi-party
setting.

140

8.5. Applications

HSS-based PCF for pseudorandom permutations over F3

Gen(1n)
1 : (pk, (ekA, ekB))← HSS.Setup(1n)
2 : κ← F.KeyGen(1n)
3 : ([[κ]]A, [[κ]]B)← HSS.Input(pk, κ)
4 : MA ← Sim0(1n)
5 : MB ← Sim1(MA, αB := 1, (ekA, ekB))
6 : MC ← Sim1(MA, αC := −1, (ekA, ekB))
7 : Set k0 := (pk, [[κ]]A, ekA,MA)
8 : Set k1 := (pk, [[κ]]B , ekB ,MB)
9 : Set k2 := (pk, [[κ]]B , ekB ,MC)

10 : return (k0, k1, k2)

Eval(i, ki, x)
1 : parse ki = (pk, k′, ek,M)
2 : ⟨µ⟩i ← ExtEval(i, ek,M, k′, Px) ▷ Px is the program for F.Eval(·, x)
3 : if i = 0: return ⟨µ⟩i
4 : if i = 1: return 2 + ⟨µ⟩i
5 : else return 1− ⟨µ⟩i

Figure 8.5.: HSS-based PCF construction

141

8. Compressing Pseudorandom Permutation Correlations

8.5.1. Anonymous broadcast via DC-nets
In a DC-net [Cha88; GJ04], parties use secret sharing to hide the provenance of a message.
DC-nets form the backbone of anonymous broadcast protocols [CBM15; ECZB21; NSD22;
APY20]. The main idea is that each party Pi with message mi ∈ {0, 1}ℓ generates a
one-hot vector vi with the message mi in the j-th coordinate, where j is chosen randomly
by party Pi. The vector vi is then additively secret-shared with all other parties. Given
all the secret shares, the parties can locally generate a secret share of the combined vector
v by adding all the secret shared vectors together. That is, they compute a share of
v := ∑n

i=1 vi. Finally, by broadcasting their shares of v (or posting them to a bulletin
board), the parties obtain the vector v in the clear, which reveals the set of messages
while hiding the provenance of each message. In particular, DC-nets provide unlinkability
between parties and their message since the position of each party’s message in v was
chosen randomly and independently.

A practical challenge with the DC-net architecture is handling message collisions—an
artifact of each party randomly selecting the “slot” of v they write their message into.
Concretely, the problem is that if two parties Pi and Pj write their messages in the same
non-zero coordinate of the vector v, then the corresponding messages are added together
resulting in a “clobbered” output. The standard solution to this problem is to either
(1) run a special protocol to allow each party to “reserve” a random slot in the output
vector [SB07; NSD22] or (2) increase the size of the vector to make the probability of a
collision sufficiently small [CBM15; APY20]. However, these solutions are undesirable
given that they both add communication and computation overheads on the parties.
As highlighted by Golle and Juels [GJ04]: “There is no good non-interactive means of
enabling all players to select distinct message position.”

Here, we show that our constructions of PCGs and PCFs for permutations, provide
such a non-interactive solution to address collisions, as originally imagined by Golle
and Juels: Each party obtains a pseudorandom index automatically assigning them to a
unique slot. Therefore, after a one-time setup protocol, the parties can use a DC-net
without the risk of collisions. Moreover, this approach avoids the need for increasing the
size of the message vector or running an allocation protocol at each round.

While this application to DC-nets is immediate for our unbiased PCF construction,
we need to be a little more careful with our biased PCG construction. We show that
in the context of DC-nets, where parties broadcast over multiple rounds, we can use a
randomness extractor to make the permutation unbiased, while only modestly increasing
the communication overhead on the parties (in particular, the parties only need to
broadcast a few additional bits in each round, independent of the message size).

Dealing with bias via the Von Neumann extractor. We recall that the bias of the
permutation comes from the pseudorandom bit µ being biased towards one. The Von
Neumann extractor [Von+63] is a simple way of unbiasing any Bernoulli distribution and
works as follows: Given a sequence of biased random bits, examine each consecutive pair
of bits and discard all pairs where the xor of the two bits is zero. The remaining bits
are then guaranteed to be unbiased. Our idea is to use the multi-round DC-net setting
to allow parties to unbias the bits “on-the-fly” at round r for use in round r + 1. The

142

8.5. Applications

main idea is that the parties can use the biased bit PCG from Figure 8.3 to generate a
sequence of 2k biased bits at round r. Then, at the end of round r, they reveal k sums
corresponding to the sum of each pair of consecutive bits (the sum is computed over F3).
Then, at round r + 1, the parties use the permutation generated using the first bit µ
from a pair whose bits sum to one. By the guarantees of the Von Neumann extractor,
all the bits in these pairs are distributed as unbiased pseudorandom bits (if the sum is
1 ∈ F3, then the two bits in the pair are not equal). Moreover, because the parties only
reveal the sum of the bits in the pair, no party learns whether the value of the first bit in
the pair is zero or one.3

Overall, the protocol proceeds as follows:

One-time Setup. In the one-time setup, the i-th party is given a PCG key ki for
Figure 8.3. The setup additionally distributes a uniformly random starting permutation
to all parties. The round number r is initialized to zero. Given the PCG key ki, the i-th
party runs PRBits.Expand to generate a sequence of ℓ · 2k biased pseudorandom bits and
obtains the associated 2k pseudorandom biased permutation outputs.

Step 1: Broadcast. In the r+ 1-st round, the parties use the r-th permutation as their
slot assignment for the DC-net protocol and compute shares of the vector v containing
all their messages. Then, each party parses the r-th block of 2k consecutive shares of bits
output by PRBits.Expand as a sequence of k pairs, and broadcasts the k shares obtained
by summing the bits in each pair in this sequence. Each party outputs their share of v
along with their shares of the k pair sums.

Step 2: Generating the next permutation. With the k sums revealed, let j denote
the index of the first sum that equals 1 in the sequence of k sums. The parties select
the 2j-th permutation output by PCG.Expand for the r-th round, which corresponds
to selecting the pseudorandom permutation generated using the 2j-th bit output by
PRBits.Expand.

Analysis. For each pair that sums to 1, the parties do not learn which bit in the pair
was zero vs. one. Therefore, the sum of the two consecutive shares reveals whether or
not the two bits are equal in F3, and nothing else. Then, by the properties of the Von
Neumann extractor, we have the guarantee that all the pairs that sum to 1 are unbiased.
By selecting the first such pair, we have the guarantee that both the bits in that pair are
unbiased. Therefore, the permutation associated with the first bit of that sequence is
also guaranteed to be unbiased.

Determining the value of k. We still need to analyze how large k needs to be in order to
guarantee, with high probability, that at least one pair has two differing bits (so that the
sum of the bits is one). We compute k using a simple Chernoff bound. The probability
that a bit is 1 is 2

3 . Therefore, the probability of getting two differing consecutive bits is
(1

3 ·
2
3) + (2

3 ·
1
3) = 4

9 . Let X be the random variable representing the number of pairs of
consecutive different bits in k trials. We want to find k such that Pr[X > 0] ≥ 1− 2n so

3Indeed, all they learn is that the two bits are distinct. Moreover, all pairs that sum to 0 or 2 are
discarded and therefore do not affect the protocol.

143

8. Compressing Pseudorandom Permutation Correlations

as to guarantee a negligible correctness failure in the security parameter. The expected
value of X is 4k/9 and by the Chernoff bound, we have that: Pr[X = 0] ≤ e−2k/9.
Therefore, by solving for k such that 2−n ≤ e−2k/9, we get that we need k ≥ 9

2n ln(2) so
that Pr[X > 0] ≥ 1− 2−n. For n = 40, this requires k ≈ 120 to ensure that the parties
can extract a single unbiased bit from the k pairs of bits in each round.

8.5.2. Single Secret Leader Election
Here, we describe an application of our PCF construction to single secret leader election
(SSLE) [BBHP22; CFG23; BEHG20; CFG22; CCMBM24]. The problem of SSLE
appears in many distributed systems contexts, and in particular, in proof-of-stake based
cryptocurrencies. Informally, SSLE requires a set of parties to secretly agree on a single
leader, such that only the elected leader knows that they were elected. Additionally,
SSLE requires the leader to be able to prove, at some later point in time, that they
were elected. The definition of SSLE is complex and so we refer the reader to Boneh et
al. [BEHG20] for the full formalization. Here, we sketch how a PCF for pseudorandom
permutations coupled with a NIZK [BFM88] gives us a simple SSLE protocol.

The basic idea is that we can let the leader be decided by having the lowest permutation
value (i.e., zero). By the security of the PCF, no party (besides the leader) learns who
was elected in the round. Then, the only missing component is the ability for the elected
leader to prove to the other parties that they obtained the lowest permutation value (i.e.,
that the output of PCF.Eval is zero). This can be achieved by having the output of the
setup give all the parties commitments to the set of keys {k0, k1, k2}, which then allows
the i-th party to prove via a NIZK that the output of PCF.Eval (using key ki) results in
zero.

Overall, the SSLE protocol with n parties proceeds in three steps:
One-time Setup. In the one-time setup, the i-th party is given a PCF key ki and
a commitment to all other parties’ PCF keys kj for j ∈ [n]. The round number r is
initialized to zero.
Step 1: Election. In the election step (which is repeated over many rounds), each
party runs PCF.Eval using the round number r as input. The party with the zero output
is determined as the leader at round r.
Step 2: Proof. In the proof step, the elected leader (say, party i) generates a NIZK to
prove that, relative to the commitment of ki, the output of PCF.Eval using key ki and
input r outputs zero.
Step 3: Verification. The parties use the public commitment of ki to verify the NIZK
generated by party i in round r.
Remark 6 (Requirement for a PCF). We crucially rely on the PCF to ensure that the
elected leader can produce an efficient NIZK that doesn’t grow with the total number
of rounds. If a proof is not required, then a PCG would suffice to instantiate SSLE.
Moreover, we note that our (biased) PCG construction gives us a perfectly unbiased
SSLE protocol (even though the permutation itself is biased) since the party with the
zero share is pseudorandomly distributed across all three parties.

144

8.6. Optimizations and Evaluation

8.6. Optimizations and Evaluation

In this section, we first describe an optimization to the PCG construction when instanti-
ated using a with an leaky programmable DPF.

8.6.1. Optimizing Programmable PCGs for Biased Bits

We discuss how to optimize the concrete efficiency of the programmable PCG for (1/6)-
biased bits described in Section 8.4.3. The construction of Section 8.4.3 is very similar
to the original PCG for OLE from QA-SD of Bombar et al. [BCCD23] (adapted to
generate shares of a pseudorandom square instead of shares of a pseudorandom product).
Thanks to the followup work of Bombar et al. [BBCCDS24a] that introduces a number
of algorithmic and low-level optimizations, this PCG was shown to achieve a very good
concrete performance over small fields.4

The core bottleneck of our construction is its use of the programmable DPFs from [BGIK22]
instead of the (much faster, non-programmable) DPFs from [BGI16b]: as the authors
of [BGIK22. page 5] write themselves, “our construction [...] cannot offer negligible
privacy error ε with good concrete efficiency.” However, the starting point of [BGIK22]
is a programmable DPF with noticeable privacy error which does achieve good concrete
efficiency. We make the following observation, which we believe to be useful beyond the
context of the current work:

Using the programmable DPF of Boyle et al. [BGIK22] with a large privacy
error ε in a PCG construction still results in a secure PCG scheme, at the
cost of assuming a stronger flavor of the syndrome decoding assumption.

We note that replacing standard DPFs with a programmable DPF in PCG constructions
has additional benefits that go beyond our target application:

(1) When generating random point functions, the programmable DPF of [BGIK22]
admits a simple 2-round key distribution protocol (while the DPF from [BGI16b]
requires logn round for a domain of size n) and

(2) allows one of the key shares to be extremely small (a 128 bit string).

These advantages translate directly to the PCG setting, yielding PCGs featuring a
2-round seed distribution protocol and one optimally-short key. Combined with our
observation, this yields a simple approach to build reasonably efficient PCGs (e.g., for
OLEs) with these appealing features.

4Bombar et al. [BBCCDS24a] report generating 12 millions OLEs over F4. While our setting is slightly
different (we work over F3 and use programmable DPFs) most of their optimizations carry over
directly to our setting.

145

8. Compressing Pseudorandom Permutation Correlations

8.6.1.1. Brief overview of the programmable DPF.

The main building block is a punctuable PRF. A puncturable pseudorandom function
(PPRF) [KPTZ13; BW13; BGI14] is a PRF F such that given an input x, and a PRF key
k, one can generate a punctured key, denoted k{x}, which allows evaluating F at every
point except for x (i.e., there is an algorithm F.Eval such that F.Eval(k{x}, x′) = FK(x′)
for all x′ ̸= x), and such that Fk(x) is indistinguishable from random given k{x}. The
seminal tree-based construction of Goldreich et al. [GGM86] over a domain [n] yields
a PPRF [BGI14] with key size n and punctured key size n · logn; it admits an efficient
2-round distributed key generation protocol [Ds17].

At a high level, the full-domain evaluation of the PDPF of Boyle et al. [BGIK22]
proceeds as follows. Given the target domain size n, let N = T · n, for a parameter T to
be determined later. Let P0, P1 denote two parties who will receive PDPF keys K0 and
K1 respectively.

• Gen0(1n): Sample a key K0 = K for a PPRF FK : [N]→ [n].

• Gen1(y): To puncture at a point y ∈ [n], randomly select an input x such that
FK(x) = y (output failure if there is no such input), and return the key K1 =
(x,K{x}) punctured at x.

• Eval(K0): given K, initialize u0 ← (0, . . . , 0). For i = 1 to N , compute j ← FK(i)
and add 1 to u0,j .

• Eval(K1): initialize u1 ← (0, . . . , 0). For every i ∈ [N] \ {x}, compute j ← FK(i)
and add 1 to u1,j .

It is easy to verify that u0 − u1 is a unit vector, with a 1 at position y. The scheme
has non-negligible privacy error towards P1, as x leaks a preimage of y.

8.6.1.2. Generating biased random unit vectors via PDPF.

We suggest a simple modification of the above approach, tailored to the setting where
one wants to generate succinct shares of a random unit vector, as is typically the case in
PCG constructions. Consider the following protocol:

• Sample a key K0 = K for a PPRF FK : [N]→ [n].

• Sample a random input x and return (x,K{x}).

• Evaluation with K0: given K, initialize u0 ← (0, · · · , 0). For i = 1 to N , compute
j ← FK(i) and add 1 to u0,j .

• Evaluation with K1: initialize u1 ← (0, · · · , 0). For every i ∈ [N] \ {x}, compute
j ← FK(i) and add 1 to u1,j .

Compared with the construction of Boyle et al. [BGIK22], we do not select an input x
mapping to a target y; rather, we select a uniformly random x and hope that it will induce

146

8.6. Optimizations and Evaluation

a sufficiently well-distributed y = FK(x). This construction does still leak information
about the secret unit vector, but the leakage is of a different nature and occurs in the
opposite direction. That is, the construction does not leak any information anymore to
P1, which is is easy to see: Given (x,K{x}), the value y = FK(x) looks uniformly random
to P1 by the security of the PPRF. However, it provides the following leakage to P0: P0
learns that y was sampled from the biased distribution Du0 that returns each element i
of [n] with probability u0,i/N . Indeed, u0,i corresponds exactly to the number of inputs
x such that FK(x) = i, hence when sampling a random x from [N], the probability that
FK(x) = i is exactly u0,i/N .

While this is a noticeable leakage, in the context of sampling noise vectors to use in a
PCG construction, it appears relatively harmless! Indeed, it translates to assuming the
hardness of (regular) syndrome decoding where the noise entries of the noise vector have
been sampled according to the biased distribution above. As T becomes sufficiently large,
by a straightforward Chernoff bound, it is easy to see that the distribution approaches
the uniform distribution, and so we expect the resulting variant of the syndrome decoding
assumption to remain secure.

8.6.1.3. The randomly-biased syndrome decoding assumption.

We formalize the above observation by introducting the randomly-biased syndrome
decoding assumption. Given parameters n, T , we let p R←W(n, T) denote the procedure
that randomly distributes n · T balls into n bins and output the vector p = (p1, · · · , pN)
where pi denotes the fraction of balls in the i-th bin. Given a weight vector p, we let Dp
denote the distribution over [n] that samples each i ∈ [n] with probability pi.

Definition 8.14 (Randomly-Biased Regular Syndrome Decoding Assumption). Let
R be a finite ring, and (t, k, n) = (t(n), k(n), n(n)) be polynomials in the security
parameter n with k, t < n. Let m← n− k. Let M =Mn,m denote a distribution over
Rm×n. Let T = T (n) denote a polynomial. The T -randomly-biased regular syndrome
decoding assumption over M with dimension k, codeword length n, and noise t, denoted
(t, k, n)-SD(M), states that for every polynomial-time algorithm A, it holds that∣∣∣∣∣∣∣∣∣∣∣∣

Pr

 b = 1 :

(p1, · · · ,pt) $←W(n/t, T)t

(e1, · · · , et) $← Dp1 × · · · × Dpt

H
$←M, e← (e1||· · · ||et)

b← A(p1, · · · ,pt, H,H · e⊺)

− Pr

 b = 1 :
(p1, · · · ,pt) $←W(n/t, T)t

H
$←M, x $← Rm

b← A(p1, · · · ,pt, H,x)


∣∣∣∣∣∣∣∣∣∣∣∣

is negligible.

The definition above is very general as we formulate the assumption with respect to
an arbitrary distribution M over the parity-check matrices of some linear code over
a ring R, and captures in particular the QA-SD assumption used in our work. It is
relatively straightforward to show that, when plugging our variant of the PDPF from
Boyle et al. [BGIK22] as a replacement for the DPF of [BGI16b] in all existing PCGs and
PCFs based on (some variant of) the regular syndrome decoding assumption, the security

147

8. Compressing Pseudorandom Permutation Correlations

D PCG.Expand Key Size
(per party)

218 4 minutes 0.71 MB
220 14 minutes 0.77 MB
222 48 minutes 0.84 MB

Table 8.2.: Performance of our PCG implementation on a c5.metal EC2 instance. We set
the noise parameter to t = 16 and set the compression factor c = 5, following the
parameter selection script of [BBCCDS24a].

analysis extends immediately under the randomly biased regular syndrome decoding
assumption (for a suitable choice of the matrix distribution M).

We leave a concrete cryptanalysis of this new assumption, and a formal reduction to
more traditional assumptions, for future work. However, we note that even for relatively
low values of T (e.g., T < 100), we are not aware of any nontrivial attacks against
this assumption instantiated with the same parameters as for the standard regular
syndrome decoding assumption. We believe that this could be formalized in the linear
test framework of [BCGIKS20a; CRR21].

8.6.2. Implementation and parameters

We implement the biased PCG construction in C by adapting the open-source imple-
mentation of the foleage [BBCCDS24a] PCG for programmable OLE correlations.
In particular, we modify their implementation by adapting it to work over F3 and use
their parameter estimation script to derive a new set of parameters tailored to our
construction. The parameters c (compression factor) and t (noise weight) influence the
size of the PCG key and evaluation time. We set c = 5 and t = 16, which requires
evaluating (ct)2 = 2916 DPFs to compute PCG.Expand. The choice of (c = 5, t = 16)
corresponds to a conservative parameter choice based on the parameter estimation script
of [BBCCDS24a]. We then replace their use of DPFs with programmable DPFs, to match
Figure 8.4. In particular, we use the T = 40, which gives us correctness 1− 2−40.

Our programmable DPF implementation takes advantage of the AES-NI instruction
to implement a fast PRG G using fixed-key AES (from the OpenSSL library [The24])
and the Davies-Meyer transform. However, programmable DPFs to not allow for the
optimizations exploited in the implementation of the FOLEAGE PCG [BBCCDS24a]
and are overall concretely more expensive to evaluate. In particular, the SPFSS (sum
of many DPFs) evaluation accounts for 98% of the total computation time of the PCG
expansion.

148

8.6. Optimizations and Evaluation

8.6.3. Benchmarks
We run a set of benchmarks using AWS c5.metal (3.4GHz CPU). All experiments are
averaged across ten trials and evaluated on a single core. We report the benchmark
results in Table 8.2. The parameter D = 2n determines the number of bits we generate
in total. Our choice of DPF range 218, 220, and 222 correspond to the size of a regular
noise block when D = 222, D = 324, and D = 326, respectively. Evaluating the PCG
requires (ct)2 calls to the DPF on domain size D/t (using the regular noise optimization
described in [BBCCDS24a]). The DPF evaluation cost ends up being the dominant
factor (approximately 97% of the total computation). However, we obtain an amortized
performance of approximately 1,200 permutations per second.

149

Part IV.

Weaker Primitives for MPC

151

9. Structured-Seed Local Pseudorandom
Generators and their Applications

9.1. Introduction

Pseudorandom generators (PRGs) are functions mapping n bits to m(n) > n bits such
that no polynomial-time algorithm can distinguish their output on a random input from
a random m-bit string. Local pseudorandom generators (local PRGs) are pseudorandom
generators where every output bit can be computed from a constant number of input bits
(that is, they belong to the complexity class NC0). The existence of local PRGs was first
investigated in the work of Cryan and Miltersen [CM01]. The work of Applebaum, Ishai,
and Kushilevitz [AIK04; AIK08] showed that pseudorandom generators in NC0 with
sublinear stretch (m = n+ o(n)) exist under widely believed standard assumption for
the case of PRG with sublinear stretch (such as factorization, or discrete logarithm), and
under a specific intractability assumption related to the hardness of decoding “sparsely
generated” linear codes for the case of PRG with linear stretch m = Θ(n).

In recent years, the existence of local pseudorandom generators with polynomial stretch
(m = n1+ε for some constant ε > 0) has been shown to enjoy a variety of applications,
ranging from secure computation with constant computational overhead [IKOS08], in-
distinguishability obfuscation [JLS21; JLS22], pseudorandom correlation generators and
functions [BCGIO17; BCMPR24], public key encryption [BKR23] and sublinear secure
computation [BCM23], to applications extending beyond the realm of cryptography
such as hardness of learning [DV21]. Consequently, the existence of polynomial-stretch
local PRGs and the cryptanalysis of existing candidates has been the subject of many
works [Gol00; MST03; BQ09; App12; OW14; CEMT14; App15; ABR16; AL16; LV17;
CDMRR18; AK19; OST19; Méa; YGJL21; Méa22; Üna23b; DMR23; Üna23a]. All
existing candidates build upon a design originally suggested in [Gol00] that applies a
well-chosen predicate P on constant-size subsets of the bits of the seed, where the subsets
are chosen to form the hyperedges of a sufficiently expanding uniform hypergraph.

9.1.1. Our contribution

In this work, we revisit the applications of local PRGs. Our main observation is that many
of the standard applications of local PRGs do not require the full power of local PRGs. In
particular, many applications only require the existence of a local pseudorandom mapping
from n-bit seeds to m-bit strings, but do not require the seeds to be sampled uniformly
at random. We formalize this observation by introducing the notion of structured-seed
local pseudorandom generators, which generalize local PRGs to the setting where the

153

9. Structured-Seed Local Pseudorandom Generators and their Applications

seed should be sampled from a prescribed distribution with support over {0, 1}n (instead
of being sampled uniformly at random), and provide a sample of applications where
structured-seed local PRGs can be used as a drop-in replacement to standard local PRGs.
Concretely, we show how to use structured-seed local PRGs in the following applications:

• Indistinguishability obfuscation from well-founded assumptions [JLS21];

• Constant-overhead secure computation [IKOS08];

• Compact homomorphic secret sharing [BCM23];

• Hardness of learning DNFs [DV21].

Beyond introducing structured-seed local PRGs and providing a formal definition,
we also introduce constructions of structured-seed local PRGs from well-studied cryp-
tographic assumptions which are not known to imply the existence of standard local
PRGs. Concretely, we focus on the sparse learning parity with noise assumption, an
assumption introduced in the work of Alekhnovich [Ale03] which is equivalent to hardness
of decoding random LDPC codes. We provide an extended coverage of various flavors of
this assumption and show several constructions of structured-seed local PRGs from these
variants. In particular, we obtain:

• A direct construction of structured-seed local PRG from the sparse-LPN assumption
with regular noise distribution (where the noise is sampled as a concatenation of
random one-hot vector), and

• A construction of structured-seed local PRG with inverse-polynomial security
from the sparse-LPN assumption with more common noise distributions. This
second construction is more involved and builds upon hashing schemes for balanced
allocation.

As a consequence, we show that for the four applications above, the assumption of local
PRGs can be replaced by the assumption that sparse-LPN with regular noise is hard (for
the application to indistinguishability obfuscation, we require subexponential hardness of
the assumption). For the application to hardness of learning, where inverse-polynomial
security suffices, we further obtain hardness results from the sparse-LPN assumption
without regular noise.

9.1.2. Concurrent work

In a recent work [RVV24], Ragavan, Vafa, and Vaikuntanathan also introduced the notion
of structured-seed local pseudorandom generators and studied its application. Our work
is concurrent and independent to theirs, and there is a significant overlap between our
results: the core observation (that structured-seed local PRGs can replace local PRGs in
some applications) and the definition of structured-seed local PRGs are essentially the
same in both works. We outline a few differences:

154

9.2. Preliminaries

• The work of [RVV24] focuses on the application of structured-seed local PRGs
to indistinguishability obfuscation (iO). While we also consider iO, they provide
a much more thorough coverage of this application and achieve stronger results
(replacing local PRGs with structured-seed local PRG in the work of [JLS22] rather
than in the work of [JLS21], hence avoiding the use of the LWE assumption).

• The other applications we consider are not considered in the work of [RVV24].
While our coverage of these applications is (for now) superficial, we plan to include
a significantly more extended coverage of the application to hardness of learning
in future versions of this work (since several non-trivial complications arise in this
setting).

• Eventually, the work of [RVV24] focused on constructions from sparse-LPN with
Bernoulli noise. In contrast, we consider other noise distributions, such as regular
noise, and XOR noise (where the noise is sampled as a XOR of unit vectors).
Consequently, our constructions of structured-seed local PRGs, while sharing a
common intuition, differ significantly from theirs.

The current version of our paper is a work in progress. We are posting this working draft
on ePrint due to the concurrent work of [RVV24] being online. In future versions of this
work, we plan to include additional results, such as

• Exploring further the implications of structured-seed local PRGs for PAC-learning;

• Providing constructions of structured-seed local PRGs with improved parameters
(smaller locality for a given stretch) from the Expand-Accumulate LPN assumption
from [BCGIKRS22].

9.2. Preliminaries
Vector and Matrix. We denote vectors using bold font and matrices using caps. Given
a vector v, we write v[i] to denote its i-th entry, for a given set S ∈ [n], we denote v[S]
as a set including i-th entries of v for all i ∈ S. By default, all vectors are column vectors.
We call a length-m one-hot vector as a unit vector over Fn

2 . We write [n] to denote the
set {1, · · · , n} and unitn(i) to denote a unit vector of length n having non-zero i-th entry.
For any distribution D, we denote x← D is the process of sampling uniformly x over the
distribution D.

Distribution. Given an algorithm A and a pair of distributions (D0,D1), we write
AdvA(D0,D1) to denote

AdvA(D0,D1) =
∣∣∣∣ Pr
x←D0

[A(x) = 0]− Pr
x←D1

[A(x) = 0]
∣∣∣∣ .

We say the pair of distributions (D0,D1) is polynomially indistinguishable and subexpo-
nentially indistinguishable if AdvA(D0,D1) ≤ negl(λ) for all sufficient large λ ∈ N and
AdvA(D0,D1) ≤ exp(−λc) for a real number c > 0 respectively.

155

9. Structured-Seed Local Pseudorandom Generators and their Applications

9.2.1. LPN Assumptions

The LPN assumption over the binary field F2 states, informally, that no adversary can
distinguish (A,A · x + e) from (A,b), where A is a matrix sampled from some matrix
distribution M over Fn×k

2 , x is sampled uniformly from Fk
2, and e is a noise vector

sampled from some noise distribution E over (typically sparse) F2-vectors. The vector b
is a uniform vector over Fn

2 . More formally, we define below the LPN assumption over F2
with dimension k and n samples, w.r.t. a matrix distribution M and a noise distribution
D:

Definition 9.1 (Learning parity with noise). For any integer k ∈ N, let n = n(k) be
a polynomial, and let M = Mn,k be a distribution over Fn×k

2 . Let E = En be a noise
distribution over Fn

2 . Then, we say that the (M, E)-LPN problem is (T, ε, δ)-hard if for
every probabilistic adversary A = (An)n∈N of size at most T = T (n), it holds that for all
large enough k,

Pr
A

$←Mn,k

[
AdvAk

(DA
0 ,DA

1) > ε
]
≤ δ,

where DA
0 denotes the distribution {(A,A · x + e) | x $← Fk

2, e
$← E} and DA

1 denotes
{(A,b) | b $← Fn

2}.

9.2.1.1. Types of noise.

Denoting w a parameter which governs the average density of nonzero entries in a random
noise vector e, common choices of noise distribution are Bernoulli noise (each entry
of e is sampled from a Bernoulli distribution with parameter w/n), exact noise (e is
uniformly random over the set of vectors of Hamming weight w), and regular noise (e is a
concatenation of w random unit vectors). Another natural choice of noise distribution is to
set e to be the XOR of w random one-hot vectors of length n, as the independence of the
one-hot vectors is often convenient in security analysis. We will call respectively Bernoulli
noise, exact noise, regular noise, and xor noise these standard noise distributions, and
denote:

• Bn,w the distribution over Fn
2 where each entry is set to 1 with independent

probability w/n;

• Sn,w the uniform distribution over the set of vectors of Fn
2 with Hamming weight w;

• Rn,w the distribution obtained by sampling w one-hot vectors over Fn/w
2 (assuming

for simplicity that w divides n) and outputting their concatenation;

• Xn,w the distribution obtained by sampling w one-hot vectors over Fn
2 and outputting

their XOR.

When n is clear from the context, we drop it from the subscript and write Bw,Sw,Rw,Xw

respectively.

156

9.3. Defining Structured-Seed Local PRGs

When w ≪
√
n (the “low-noise” setting), the flavors of LPN with noise sampled from

Sw and Xw are easily shown to be equivalent, since a random sample from Xw has
Hamming weight exactly w with probability at least 1− w2/n. In turn, LPN with noise
sampled from Sw is known to be equivalent to LPN with noise sampled from Bw [Pie12].
While there are also reductions between LPN with regular noise and other variants, they
typically induce a much larger loss in the parameters [LWYY24].

9.2.1.2. Discussion on the definition.

The reader may observe that Definition 9.1 differs slightly from the standard definition of
LPN: the standard definition requires that the adversary should have at most advantage
ε (for a negligible ε = ε(n)) in distinguishing {(A,b) | A $← Mn,k,b

$← DA
0 } from

{(A,b) | A $←Mn,k,b
$← DA

1 } (that is, the distinguishing advantage is also quantified
over the random choice of A). Definition 9.1 is more fine-grained: it separates the
probability δ that the matrix A is a “good matrix” for the LPN problem from the
probability ε that the adversary can (given A) distinguish the LPN samples from random.
Setting (ε, δ) to be negligible recovers the standard LPN definition. However, this more
fine-grained definition style is particularly helpful for the sparse-LPN assumption, which
we cover in Section 9.4.

9.2.2. Useful Lemmas

Lemma 9.1 (Chernoff Bound). Let n ∈ N and X1, · · · , Xn be independent random
variables taking values in {0, 1}. Let X denote their sum and let µ← E[X]. Then for
any δ ∈ (0, 1),

Pr[X ≥ (1 + δ)µ] ≤ exp
(
−δ

2µ

3

)
and Pr[X ≤ (1− δ)µ] ≤ exp

(
−δ

2µ

2

)
.

Lemma 9.2 (Markov inequality). Let X be a positive random variable with finite
expectation µ. Then for any k > 0, Pr[X ≥ k] ≤ µ/k.

Lemma 9.3 (Piling-up lemma). For any 0 < r < 1/2 and any integer N , given
N i.i.d. random variables X1, · · · , XN over F2 with Pr[Xi = 1] = r, it holds that
Pr[⊕N

i=1Xi = 0] = 1/2 + (1− 2r)n/2.

9.3. Defining Structured-Seed Local PRGs

9.3.1. Noisy local circuits

The class NC0 is the class of functions computable by uniformly generatable boolean
circuits with constant depth and bounded fan-in (equivalently, boolean circuits where
every output bit depends on a constant number of input bits).

157

9. Structured-Seed Local Pseudorandom Generators and their Applications

9.3.1.1. The noisy-NC0 model.

Let N = {Nn}n∈N be a family of distribution over {0, 1}n. We introduce below the
notion of N -NC0 circuits, which are (informally) NC0 circuits C where the outputs of
any gate can be flipped with some probability, where the randomness is picked from the
random tape is filled with a sample from N|C|. More formally, we define the model of
N -NC0 circuits as follows:

Definition 9.2. An N -NC0 circuit C : {0, 1}n → {0, 1}m is a bounded fan-in constant-
depth circuit where the gates are noisy, in the following sense: on input x ∈ {0, 1}n, a
random sample r $← N|C| is picked from N . Then, during the evaluation of C(x), the
output of each gate gi is xored to ri. We denote C(x : r) the result of evaluating the
noisy circuit C on input x with randomness r.

Remark 7. The model of noisy circuits differs from that of randomized circuits, which
are passed a random input in addition to their regular input, in two respects...

9.3.2. Noisy local PRGs

A cryptographic pseudorandom generator (PRG) is an algorithm PRG : {0, 1}n → {0, 1}m,
with n > m, such that no polynomial-time adversary can distinguish between PRG(r)
(for r $← {0, 1}n) and a random z

$← {0, 1}m. The uniform string r ∈ {0, 1}n is called the
seed of the PRG. A pseudorandom generator is local if each output bit depends on a
constant number of input bits; equivalently, PRG can be computed by an NC0 circuit.

In the formal definition below and given a noise distribution N , we expand the notion of
local pseudorandom generator to also capture N -local PRGs, where PRG is a randomized
algorithm computable by an N -NC0 circuit. Formally,

Definition 9.3 (Noisy Local Pseudorandom Generator). Let m(·) be a polynomial,
and let N = {Nn}n∈N be a family of efficiently samplable distributions over {0, 1}n. A
noisy pseudorandom generator with stretch m(·) is a pair of uniform p.p.t. algorithms
(Setup,PRG), with:

• Setup(1n). A probabilistic algorithm that on input 1n outputs public parameters
pp.

• PRG(pp, seed; r). A probabilistic algorithm that on inputs a seed seed ∈ {0, 1}n,
public parameters pp, and running on random tape r ∈ Supp(N), outputs a string
y ∈ {0, 1}m(n).

A noisy local PRG must be local and secure:
Locality. A noisy PRG is local if PRG(pp, ·) is implementable by an N -NC0 circuit for

every pp in the support of Setup(1n); we typically think of Setup as an efficient algorithm
that samples the noisy local circuit computing x 7→ PRG(pp, x).

Security. A noisy local PRG is (T, ϵ, δ)-secure if for any non-uniform p.p.t adversary
A = (An)n∈N of size at most T = T (n), for all n ∈ N, Pr[AdvAn(D0,D1) > ε] ≤ δ, where

158

9.3. Defining Structured-Seed Local PRGs

for b ∈ {0, 1}, Db = Dn
b denotes the family of distributions

{(pp, zb) | pp $← Setup(1n), x $← {0, 1}n, r $← N , z0
$← {0, 1}m(n), z1 ← PRG(pp, x; r)}.

A noisy pseudorandom generator is (ε, δ)-secure if it is (T, ε, δ)-secure for every T (n) =
poly(n), and that it is γ-secure if it is (ε, γ − ε)-secure for some ε ≤ γ.

We say that a noisy local PRG has polynomial stretch if m(n) = n1+Ω(1).

9.3.3. Structured-seed local PRGs
In this section, we introduce the notion of structured-seed local pseudorandom generator.
A structured-seed pseudorandom generator relaxes the standard notion of pseudorandom
generator to allow for more general distributions of seeds: instead of sampling r uniformly
over {0, 1}n, we sample it as r $← SampleSeed, where

• (small size) the support Supp(SampleSeed) of SampleSeed is contained in {0, 1}n,
and

• (efficiency) the running time of the sampler SampleSeed is much smaller than m.

We provide a formal definition below.

Definition 9.4 (Structured-Seed Local Pseudorandom Generator). A structured-seed
pseudorandom generator with a stretch m(·) is a triple of uniform p.p.t. algorithms
(Setup,SampleSeed,PRG), with:

• Setup(1n). A probabilistic algorithm that on inputs 1n and outputs a public pa-
rameter pp.

• SampleSeed(pp). A probabilistic algorithm that on inputs pp and outputs a seed
value seed ∈ {0, 1}n.

• PRG(pp, seed). A deterministic algorithm that on inputs seed, public parameter pp
and outputs an evaluation value y ∈ {0, 1}m(n).

A structured-seed pseudorandom generator is (T, ϵ, δ)-secure if for any non-uniform p.p.t
adversary A = (An)n∈N of size at most T = T (n), for all n ∈ N,

Pr
[
AdvAn(D0,D1) > ε

]
≤ δ,

where D0 = Dn,n
0 denotes the family of distributions

{(pp,PRG(pp, r)) | pp $← Setup(1n), r $← SampleSeed(pp)}

and D1 = Dn,n
1 denotes the family of distributions

{(pp, z) | pp $← Setup(1n), z $← {0, 1}m(n)}.

159

9. Structured-Seed Local Pseudorandom Generators and their Applications

Furthermore, a structured-seed PRG is said to be in NC0, or local, if PRG is imple-
mentable by a uniformly efficiently generatable NC0 circuit. We say that a structured-seed
PRG has polynomial stretch if m(n) = n1+Ω(1). Denoting Tss = Tss(n, n,m) the (worst-
case) running time of SampleSeed (implemented by a uniformly efficiently generatable
family of boolean circuits), we say that a structured-seed PRG has strong polynomial
stretch if m(n) = T1+Ω(1)

ss .

We note that if a structured-seed PRG with input size n and stretch m is local, then
there exists a locality parameter l such that for all i ∈ [m], there exists a subset Si ⊂ [n]
of size |Si|≤ l and a predicate Pi such that for all x ∈ Supp(SampleSeed(pp)), defining y =
PRG(x), we have yi = Pi(x[Si]).

Eventually, we consider a further relaxation of structured-seed local PRGs where we
allow Setup to be inefficient:

Definition 9.5 (Non-Uniform Structured-Seed Local PRG). We say that (Setup,
SampleSeed,PRG) is a non-uniform structured-seed local pseudorandom generator if it
satisfies the conditions of Definition 9.4, except that Setup(1n) is not required to run in
polynomial time.

9.3.4. From weak to strong local PRGs
Theorem 9.4 ([AK19], Theorem 2.12). For every constants d ∈ N, a > 0, and c, c′ > 1,
there exists a constant d′ for which the following holds. Any ensemble of ε-secure d-
local PRGs G : {0, 1}n → {0, 1}nc with ε = 1/na can be converted into an ensemble of
negl(n)-secure d′-local PRGs G′ : {0, 1}n → {0, 1}nc′

.

9.4. The Sparse-LPN Assumption
9.4.1. The sparse-LPN assumption
In this work, we will mostly focus on a variant introduced in [Ale03] (commonly called
the “Alekhnovich assumption” or “sparse-LPN assumption”), where M is a distribution
of sparse matrices:
Notation 1. We denote by Wc = Wc

n,k the distribution over Fn×k
2 that samples inde-

pendently each row r of A as r⊺ $← Sc,k; that is, A is a uniformly random matrix with
row-weight c over Fn×k

2 .
With these notations, the Aleknovich assumption asserts that for a suitable constant

c ≥ 3, the (Mc,Sw,F2)-LPN(k, n) assumption holds.
It is not hard to see that δ cannot be negligible for sparse-LPN: with probability

at least n2/kc, two rows ai,aj of A will be identical, in which case there is a trivial
distinguisher (as ⟨ai,x⟩+ e[i] is very likely to be equal to ⟨aj ,x⟩+ e[j] by the sparsity
of the noise). In fact, any small set of linearly-dependent rows of A yields a nontrivial
distinguisher. Therefore, the standard formulation of sparse-LPN asserts that the
(Mc,Sw,F2)-LPN(k, n) is (poly(n), negl(n), δ)-hard for a suitable inverse-polynomial δ.

160

9.4. The Sparse-LPN Assumption

When A does not have a small set of linearly-dependent rows, the best-known attacks
on sparse-LPN are the same as the best-known attacks on LPN. This is best explained
through the framework of linear tests, a framework to heuristically analyze the hardness
of variants of LPN which has roots in the works of Naor and Naor [NN90] and Mossel,
Shpilka, and Trevisan [MST03], and which was explicitly put forth and stuied in the
context of LPN in [ADINZ17; BCGIKS20a; CRR21]. The central observation of this
framework is that most known attacks against LPN (such as BKW [BKW00; Lyu05],
ISD [Pra62], and many more) share a common template, and that to defeat all attacks
sharing this template, it suffices (in coding theoretic terms) that the dual distance of the
code generated by A is large – i.e., that A does not have a small set of linearly-dependent
rows.

9.4.2. Security against linear tests
We briefly overview the linear test framework, and derive from the framework a concrete
set of parameters for the sparse-LPN assumption. We stress that the framework is only
a heuristic: there are known settings in which a variant of LPN can be broken by an
attack that does not fit in the framework (see e.g. the discussions in [CRR21; BCCD23]).
Nevertheless, the bounds provided by this framework are in line with the state-of-the-art
cryptanalysis on sparse LPN, and provides a convenient heuristic to choose plausible
parameters.
Notation 2. We call dual distance of a matrix M , and write dd(M), the largest integer d
such that every subset of d rows of M is linearly independent.

Informally, the linear test framework models attacks where the adversary is unbounded
and can arbitrarily use the LPN matrix A, but is restricted to computing a linear function
of the vector b. Concretely, let A be a (possibly unbounded) adversary. The attack
proceeds in two stages:

1. A receives the LPN matrix A and outputs a nonzero test vector v. Note that A
can run in unbounded time, but sees only the matrix A.

2. In the second stage, the vector b ← A · x + e is sampled. We say that A is
successful if, with large probability over the random choice of A, the bias of the
distribution induced by sampling x and the noise e and computing ⟨v, Ax + e⟩
(that is, evaluating the linear function picked by A on b) is noticeable.

To formally state the definition, we recall the notion of bias of a distribution:

Definition 9.6 (Bias of a Distribution). Given a distribution D over Fn
2 and a nonzero

vector u ∈ Fn
2 , the bias of D with respect to u, denoted biasu(D), is equal to

biasu(D) =

∣∣∣∣∣∣∣ E
x←D

[u⊺ · x]− E
x $←Fn

2

[u⊺ · x]

∣∣∣∣∣∣∣ =
∣∣∣∣ Pr
x←D

[u⊺ · x = 1]− 1
2

∣∣∣∣ .
The bias of D, denoted bias(D), is the maximum bias of D with respect to any nonzero
vector u.

161

9. Structured-Seed Local Pseudorandom Generators and their Applications

Definition 9.7 (Security against Linear Test). For any integer k ∈ N, let n = n(k)
be a polynomial, and let M = Mn,k be a distribution over Fn×k

2 . Let E = En be a
noise distribution over Fn

2 . Then, we say that the (M, E)-LPN problem is (ε, δ)-secure
against linear tests if if for any (possibly inefficient) adversary A which, on input a matrix
A ∈ Fn×k

2 , outputs a nonzero v ∈ Fn
2 , it holds that

Pr[A $←M,v $← A(A) : biasv(DA) ≥ ε(n)] ≤ δ(n),

where DA denotes the distribution induced by sampling x $← Fm
2 , e ← En, and

outputting the LPN samples A · x + e.
The following observation is folklore, and was made explicitly e.g. in [BCGIKS20a]:

Observation 1. Most existing attacks against LPN, including BKW [BKW00; Lyu05],
ISD [Pra62], variants of Gaussian elimination [LF06; EKM17], statistical decoding
attacks [Ove06], generalized birthday attacks [Wag02; Kir11], linearization attacks [BM97;
Saa07], or attacks based on finding correlations with low-degree polynomials [ABGKR14;
BR17], can be cast as instances of the linear test framework. Therefore, none of these
attacks can provide a polynomial-time distinguisher against any LPN assumption that is
provably (ε, δ)-secure against linear tests for negligible functions (ε, δ).

Given any test vector v, observe that ⟨v, Ax + e⟩ = ⟨v, Ax⟩+ ⟨v, e⟩. We recall a simple
folklore observation, rooted in [NN90; MST03]: the distribution induced by A ·x is dd(A)-
wise independent by definition of dd(A). Hence, the bias of ⟨v, Ax + e⟩ = ⟨v, Ax⟩+ ⟨v, e⟩
is zero if the Hamming weight of v is less than dd(A). But if HW(v) ≥ dd(A), then ⟨v, e⟩
has low bias, because e “hits” a nonzero entry of v with large probability. Formally:
Lemma 9.5. Let M =Mn,k be a distribution over Fn×k

2 and En denote a noise distribu-
tion over Fn

2 . Then for any d ∈ N, the the (M, E)-LPN problem with dimension k = k(n)
and n = n(n) samples is (εd, δd)-secure against linear tests, where

εd = max
HW(v)>d

biasv(En), and δd = Pr
A

$←M
[dd(A) < d].

The quantity εd in Lemma 9.5 depends solely on the noise distribution and can be
computed easily for standard types of noise:
Lemma 9.6. For any integer d and noise distribution En, we denote εd(En) =
maxHW(v)>d biasv(En). Then

• εd(Xn,w) ≤ (1− 2(d+ 1)/n)w/2 ≤ exp(−2(d+ 1)w/n)/2

• εd(Rn,w) ≤ (1− 2(d+ 1)/n)w/2 ≤ exp(−2(d+ 1)w/n)/2

• εd(Bn,w) ≤ (1− 2w/n)d+1/2 ≤ exp(−2(d+ 1)w/n)/2
The proof of the claim is a straightforward application of the piling-up lemma

(Lemma 9.3): for Xn,w or Rn,w, the distribution induced by ⟨v, e⟩ is a xor of w in-
dependent Bernoulli samples, each equal to 1 with probability HW(v)/n < d/n. For
Bn,w, ⟨v, e⟩ is a xor of HW(v) > d Bernoulli sample of rate w/n. The rightmost side of
the inequalities follows from the standard inequality (1− 1/N)N ≤ exp(−1). We note
that a similar bound can be shown (with a slightly more tedious analysis) for Sn,w.

162

9.4. The Sparse-LPN Assumption

9.4.3. The dual distance of random sparse matrices

We recall below a standard bound on the probability that random sparse matrices have
large dual distance.

Theorem 9.7 (Most sparse matrices have large dual distance). For any constants c ≥ 3
and η ∈ (0, 1), for any large enough k = k(n), there is a constant γ(c) such that for any
n ≤ k(1−η)c/2+η,

Pr
[
A

$←Wc : dd(A) ≥ kη

γ(c) − 1
]
≥ 1−

(
γ(c)
kη

)c−2

.

For example, setting c = 3 and η = 1/5, Theorem 9.7 yields that for n = k1.4, a random
c-sparse matrix A over Fn×k

2 has dual distance dd(A) = Ω(k0.2) with probability at least
1−O(k−0.2). For completeness, we provide the proof which is a direct adaptation (and
slight generalization) of the analysis of [MST03. Section 5.3]. Part of the proof is taken
essentially verbatim from [CRR21], and adapted to our parameter setting. Near-identical
proofs of essentially the same theorems can be found in other works, e.g. [BCGIKRS23;
DIJL23b].

Proof. Given a matrix A ∈ Fn×k
2 , we denote by (a1, · · · ,an) the rows of A, and by

(a1, · · · ,ak) its columns. For any subset S ⊆ [n] of the rows of A, we call column-
neighbors of S in A, and write Nc

A(S) ⊆ [k], the subset of the columns of A which
have at least one 1 in a row of S. For any integer d, we say that A has the d-unique
column-neighbor property if for any set S ⊆ [n] with |S|≤ d, there exists a column Aj of
A such that Aj [S] contains exactly a single 1.

Lemma 9.8 ([MST03]). If A ∈ Fn×k
2 has d-unique column-neighbor, then dd(A) ≥ d− 1.

Proof. For any subset S of [n] with |S|≤ d, there exists a column of A that has exactly
one 1 in a row indexed by S, hence ⊕i∈S ai ̸= 0k.

In the following, we show that a randomly sampled sparse matrix A has d-right unique
column-neighbor with high probability, for a certain d. This follows from the fact that A
has certain expansion properties. We say that a matrix A is (d, α)-expanding if for every
subset S ⊆ [n] with |S|≤ d, it holds that |NA(S)|> α · |S| (in other words, a matrix A is
(d, α)-expanding if it is the adjacency matrix of a (d, α)-expanding bipartite graph).

Lemma 9.9 ([MST03]). Let A ∈ Supp(Wc) be a c-sparse matrix. If A is (d, c/2)-
expanding, then it has d-unique column-neighbor.

Proof. Assume that A does not have d-unique column-neighbor. Let S ⊆ [n] be any
subset with |S|≤ d. Then for every j ∈ Nc

A(S), aj [S] contains at least two 1’s. Since the
rows in S contain c · |S| 1’s in total, this implies that |Nc

A(S)|≤ (c/2) · |S|.

To prove Theorem 9.7, it remains to show that a random sample fromWc is sufficiently
expanding with high probability.

163

9. Structured-Seed Local Pseudorandom Generators and their Applications

Lemma 9.10. For any large enough k = k(λ), any constants c ≥ 3 and η > 0, there is a
constant γ(c) such that for any n ≤ k(1−η)c/2+η,

Pr

A $←Wc : A is
(
kη

γ(c) , c/2
)

-expanding

 ≥ 1−
(
γ(c)
kη

)c−2

.

Proof. For any subset S ⊂ [n] and any size c · |S|/2 subset T ⊂ [k], the probability
over the random choice of A $← Wc that Nc

A(S) ⊆ T is at most (c · |S|/2k)c·|S|. Since
there are

(n
|S|
)

choices for S and
(k

c|S|/2
)

choices for T , the probability that A fails to be
(d, c/2)-expanding is at most

d∑
i=2

(
n

i

)
·
(

k

c · i/2

)
·
(
c · i
2k

)c·i
,

where the sum starts at 2 because any single row j always satisfies Nc
A({j}) = c > c/2.

Using the inequality
(a

b

)
≤ (ae/b)b, we get

d∑
i=2

(
en

i

)i

·
(

2ek
ci

)ci/2

·
(
ci

2k

)ci

=
d∑

i=2

en
i
·
(

2ek
ci

)c/2

·
(
ci

2k

)c
i

=
d∑

i=2

(
n

k
· ec/2+1 · (c/2)c/2 ·

(
i

k

)c/2−1
)i

=
d∑

i=2

(n
k

) 1
c/2−1

·
(
c

2

) c/2
c/2−1

· e
c/2+1
c/2−1 · i

k

i·(c/2−1)

≤
d∑

i=2

(
γ(c) · i

2kη

)i·(c/2−1)
,

where γ(c) denotes the constant 2 ·
(
c/2
) c/2

c/2−1 · e
c/2+1
c/2−1 . Now, setting d = k2/(γ(c) · n),

the above is upper bounded by

(
γ(c)
kη

)c−2

+
(

3γ(c)
2kη

)3(c/2−1)

+ log2 k ·
(
γ(c)2 log2 k

kη

)2c−4

+ d ·
(1
klog k

)c/2−1
,

where the first two terms are the terms for i = 2, 3 in the sum, the third term bounds the
terms i = 4, · · · , log2 k in the sum, and the last term bounds the sum of the remaining
terms. For a large enough k and any integer c > 2, this sum is therefore dominated by
its first term. The lemma follows.

164

9.4. The Sparse-LPN Assumption

9.4.4. A parametrized version of the sparse-LPN assumption

Combining Lemma 9.6 (bounding εd) and Theorem 9.7 (to bound δd) yields a quantified
estimate of the security of sparse-LPN against attacks from the linear test framework:

Lemma 9.11. For any constants c ≥ 3 and η ∈ (0, 1), for any noise distribution E ∈
{Xn,w,Rn,w,Bn,w}, the (Sc, E)-LPN problem with dimension k = k(n), noise w = w(n),
and n = n(k) ≤ k(1−η)c/2+η samples is (ε, δ)-secure against linear tests, where

ε = 1
2 · exp

(
−2 w · kη

γ(c) · n

)
, δ =

(
γ(c)
kη

)c−2

,

for a constant γ(c) = 2 ·
(
c/2
) c/2

c/2−1 · e
c/2+1
c/2−1 .

For example, γ(3) ≈ 1000, γ(7) ≈ 70, and γ(10) ≈ 67 (note however that no effort has
been made to optimize the constant, and the analysis is very loose). We are now ready
to state a concrete parametrized version of the sparse-LPN assumption; the assumption
basically states that there is no attack on sparse LPN that does significantly better than
linear tests:
Assumption 1. For any constants c ≥ 3 and η ∈ (0, 1), for any noise distribution
E ∈ {Xn,w,Rn,w,Bn,w}, for every T = 2o(n), the (Sc, E)-LPN problem with dimension
k = k(n), number of samples n = n(k) ≤ k(1−η)c/2+η, and noise w = w(n, k) ≥ n·k(1−η)c/2

is (T, ε, δ)-secure, with

ε = poly(T)
2Ω(n) , δ = 1

Ω(kη) .

We note that variants of the concrete assumption above have appeared on multiple
occasions in the literature: [ADINZ17] makes a very similar assumption (Assumption 6
in [ADINZ17]) but for a fixed matrix A, and in the constant rate setting (saying that any
circuit of size T = exp(Ωr(dd(A))) has advantage at most 1/T against sparse LPN with
noise rate r = w/n, where r is treated as a constant and Ωr(·) hides the dependency in
r). [BCGIKRS23] also makes a very similar assumption (though they again only require
the existence of a matrix A with large enough dual distance). Below, we provide two
specific parameter settings consistent with the requirements of Assumption 1 that we
will use in this work:
Parameter Set 1 (balancing (k,w)). For every constant η ∈ (0, 1), for any noise distri-
bution E ∈ {Xn,w,Rn,w,Bn,w}, for every T = 2o(n), there is a constant c(η) = 2/(1− η)
such that the (Sc, E)-LPN problem with dimension k, number of samples n = k1+η, and
noise w = n · k is (T, 2−Ω(n), 1/Ω(kη))-secure.
Parameter Set 2 (minimizing w). For every constants γ > 0, for any noise distribution
E ∈ {Xn,w,Rn,w,Bn,w}, for every T = 2o(n) and every c ≥ 2 log γ/(log γ − 1), the
(Sc, E)-LPN problem with dimension k, number of samples n = k1+γ/2 samples, and noise
w = n · kγ is (T, 2−Ω(n), 1/Ω(k1−γ/2))-secure.

165

9. Structured-Seed Local Pseudorandom Generators and their Applications

9.4.5. Amplifying advantage
Let t = t(n, ε, δ) ← n/(δε2). We prove below that, up to a poly(n, 1/ε, 1/δ) loss
in the runtime and number of samples, the (ε, δ)-hardness of sparse-LPN implies its
(exp(−Ω(n)), exp(−Ω(n)))-hardness.

Lemma 9.12. Assume that the (Sc,Xn,w)-LPN problem with dimension k = k(n), number
of samples n = k(1−η)c/2+η, and noise w = n · k(1−η)c/2 is (T ′, ε, δ)-secure. Then the
(Sc,Xn′,w′)-LPN problem with dimension k, number of samples n′ = n · t, and noise
w′ = w · t is (T, exp(−Ω(n)), exp(−Ω(n)))-secure, with T ′ = poly(T, n, 1/ε, 1/δ).

Proof. Let A be an algorithm running in time T solving the (Sc,Xn,w)-LPN problem with
dimension k, number of samples n, and noise w, such that PrA[AdvA(DA

0 ,DA
1) > ε] > δ.

Set t← n/(δε2). We show how to construct from A an algorithm B which is given black-
box access to A and (poly(n, T, 1/ε, 1/δ), 1 − exp(−Ω(n)), 1 − exp(−Ω(n)))-solves the
(Sc,Xn,w)-LPN problem with dimension k, number of samples n′ = n ·t, an noise w′ = w ·t.
We denote GoodAµ the set of all matrices A ∈ Fn×k

2 such that AdvA(DA
0 ,DA

1) > µ.
On input a (Sc,Xn,w)-LPN instance (A,b) ∈ Fn′×k

2 × Fn′
2 , let c denote the index of the

distribution from which (A,b) was sampled (i.e. c = 0 if b is an LPN sample, and c = 1
if b is uniform). B proceeds as follows:

• Break (A,b) into n′/n = t smaller instances (Ai,bi)i≤t with (Ai,bi) ∈ Fk×n
2 .

• Set S ← ∅. For each i ≤ t, test whether Ai ∈ GoodAε as follows:
– Repeat θ = 32n/ε2 times the following procedure: set ctr← 0. Sample a bit
σ̃

$← {0, 1}. If σ̃ = 0, sample (x, e) $← Fk
2 × Xn,w| and set b̃ ← Aix + e. If

σ̃ = 1, set b̃ $← Fn
2 . If A(Ai, b̃) = σ̃, set ctr← ctr + 1.

– If ctr ≥ θ · (1/2 + ε/4), declare Ai to be “good” and add i to S.
– If n/(2ε2) matrices have been declared “good” (i.e., |S|= n/(2ε2)), break.

• Set B ← |S|·(1/2− ε/16). For each good Ai:
– Sample xi

$← Fk
2, b1

i
$← Fn

2 , and set b0
i ← bi ⊕Aixi.

– Flip a coin ci
$← {0, 1} and compute σi ← A(Ai,bci

i).
– Output 1 if ∑i∈S σi ⊕ ci ≤ B.

We prove that B is successful. We use a sequence of simple claims:

Claim 9.13. If Ai ∈ GoodAε , then Pr[B declares Ai good] ≥ 1− exp(−n).

Proof. If Ai ∈ GoodAε , then Pr[A(Ai, b̃) = b] ≥ 1/2 + ε/2 by definition. It follows that
E[ctr] ≥ (1/2 + ε/2) · 32n/ε2. By a Chernoff bound 9.1,

Pr[ctr < (1/2 + ε/4) · 32n/ε2] < exp

−32 ·
(
ε/2

1 + ε

)2

· n(1 + ε)
4ε2

 ≤ exp(−n).

166

9.4. The Sparse-LPN Assumption

Claim 9.14. Let S ⊆ [n′/n] be the subset of indices i such that Ai ∈ GoodAε . Then
Pr[|S|≤ n/(2ε2)] ≤ exp(−n/8).

Proof. The Ai are sampled uniformly and independently from Fn×k
2 , and Pr[Ai ∈

GoodAε] > δ by assumption, hence E[|S|] > δ · n′/n = n/ε2. By a Chernoff bound,
it follows that

Pr[|S|≤ n/(2ε2)] ≤ exp
(
−
(1

2

)2 n

2ε2

)
< exp(−n/8).

Combining these two claims, it follows that B will declare at least n/(2ε2) matrices Ai

to be good, except with probability at most exp(−n) + exp(−n/8).

Claim 9.15. If Ai /∈ GoodAε/4, then Pr[B declares Ai good] ≤ exp(−4n/15).

Proof. If Ai /∈ GoodAε/4, then Pr[A(Ai, b̃) = b] ≤ 1/2 + ε/8 by definition. It follows that
E[ctr] ≤ (1/2 + ε/8) · 32n/ε2. By a Chernoff bound 9.1,

Pr[ctr ≥ (1/2 + ε/4) · 32n/ε2] < exp
(
−32 ·

(
ε

4 + ε

)2
· n(1/2 + ε/8)

3ε2

)
≤ exp(−4n/15).

Therefore, by a straightforward union bound, with probability at least 1− exp(−n)−
exp(−n/8)− n exp(−4n/15)/2 = 1− exp(−Ω(n)),

• B declares n/(2ε2) matrices to be good, and

• Every matrix Ai declared good by B belongs to GoodAε/4.

Then, for each Ai, observe that if (A,b) is an LPN sample, (Ai,b0
i = bi ⊕Aixi) is a

uniformly random LPN sample, while if b is uniform, the b0
i are uniform as well. That is,

• If b is uniform (c = 1), then b0
i and b1

i are identically distributed for every i ∈ S.
Therefore, ci is perfectly independent of σi, and ∑i∈S σi⊕ci is a sum of independent
unbiased random coins.

• Else, if b is an LPN sample (c = 0), then distinguishing (Ai,b0
i) from (Ai,b1

i)
is exactly distinguishing between DAi

0 and DAi
1 . Since each Ai ∈ GoodAε/4 (with

overwhelming probability), we have for every i ∈ S,

Pr[σi ⊕ ci = 1 | ci
$← {0, 1},A(Ai,bci

i)] ≤ 1/2− ε/8.

167

9. Structured-Seed Local Pseudorandom Generators and their Applications

Therefore,

2 · Pr[B fails] = Pr

∑
i∈S

σi ⊕ ci > B | c = 0

+ Pr

∑
i∈S

σi ⊕ ci ≤ B | c = 1


≤ exp

(
−|S|·(1/2− ε/8)

3 ·
(

ε

8− 2ε

)2
)

+ exp
(
−|S|·1/22 ·

(
ε

8

)2
)

= exp
(
− n

48 · (8− 2ε)

)
+ exp

(
− n

256

)
≤ exp(−Ω(n)),

where the first inequality follows by applying a Chernoff bound on both terms of the
sum. This concludes the proof that B is successful.

9.4.6. Variants: changing the noise or matrix distribution
We focused in the above on the noise distribution X since it is the most convenient to use
in our constructions. However, the same analysis and conjectures apply equivalently to
the other standard noise distributions (B,S,R) (the analysis in the linear test framework
gives identical bounds). Furthermore, since in our regime we typically have n = k1+η

with η < 1, it is not too hard to provide tight reductions between (Sc,Xn,w)-LPN and
(Sc,Sn,w)-LPN and/or (Sc,Bn,w)-LPN.

More interestingly, one can also consider a different distributions over sparse matrices,
in the hope of getting better bounds on the dual distance. And indeed, such a distribution
was exhibited in the work of Applebaum and Kachlon [AK19]: Theorem 8.2 in [AK19]
states that for every constant ℓ > 1, c > 4ℓ, there exists a negligible-error polynomial-time
algorithm that samples matrices A over Fn×k

2 , with n = kℓ rows of weight c with dual
distance dd(A) ≥ Ω(kη) for some suitable constant η(ℓ, c) ≤ 1− 4(ℓ− 1)/(c− 4). On the
flip side, this sampler achieves only a slightly negligible error probability.

9.4.7. Predicate-conditioned sparse-LPN
We now state a result that will prove useful in our analysis later. Let P = {P : Fn

2 →
{0, 1}} denote a family of predicates. For a noise distribution E , let us denote E|P the
distribution {e : e $← E | P(e) = 1} (that is, E|P samples vectors from E conditioned
on P(e) = 1). Fix a predicate P and consider the following assumption (for suitable
parameters (T, ε, δ)):

Definition 9.8 (P-conditioned sparse-LPN). For any constants c ≥ 3 and η ∈ (0, 1), for
every T = 2o(n), we say that the P-conditioned (Sc,Xn,w)-LPN problem with dimension
k = k(n), number of samples n = n(k) ≤ k(1−η)c/2+η, and noise w = w(n, k) ≤ n·k(1−η)c/2

is (T, ε, δ)-hard if for every probabilistic adversary A = (An)n∈N of size at most T = T (n),
it holds that for all large enough k,

Pr
A

$←Sc,P $←P

[
AdvAk

(DA,P
0 ,DA,P

1) > ε
]
≤ δ,

168

9.5. A Structured-Seed Local PRG from Sparse LPN

where DA,P
0 denotes the distribution {(A,P, A · s + e) | x $← Fk

2, e
$← Xn,w|P} and DA,P

1
denotes {(A,P,b) | b $← Fn

2}.

9.4.7.1. Reducing P-conditioned sparse-LPN to sparse-LPN.

In this section, we prove a reduction between P-conditioned sparse-LPN and sparse-LPN.
The quality of the reduction depends on the quantity err(P) = maxe Pr

P $←P
[P(e) ̸= 1].

Lemma 9.16. Assume that the (Sc,Xn,w)-LPN problem with dimension k = k(n), number
of samples n = k(1−η)c/2+η, and noise w = n · k(1−η)c/2 is (T ′, ε, δ)-secure. Then the
P-conditioned (Sc,Xn,w)-LPN problem with dimension k = k(n), number of samples
n = k(1−η)c/2+η, and noise w = n · k(1−η)c/2 is (O(T), ε+ err(P), δ)-secure.

Proof. Let A be a (T, ε, δ)-adversary against the P-conditioned (Sc,Xn,w)-LPN problem
with dimension k = k(n), number of samples n = k(1−η)c/2+η, and noise w = n · k(1−η)c/2.
We build an adversary B against the (Sc,Xn,w)-LPN problem as follows: given as input a
(Sc,Xn,w)-LPN problem (A,b), B samples P $← P and feeds (A,P,b) to B. Observe that

• If b is uniformly random, then (A,P,b) is a valid random P-conditioned instance.

• Else, if b is an LPN sample b = A · x + e, then the distribution of (A,P,b)
conditioned on P(e) = 1 is a valid P-conditioned LPN instance.

For σ = 0, 1, let us denote

pσ(A,P) = Pr
(A,P,b) $←DA,P

σ

[A(A,P,b) = 0].

We have AdvA(DA,P
0 ,DA,P

1) = |p0(A,Pt)− p1(A,Pt)|. Then:

Pr
A

[
AdvB(DA

0 ,DA
1) > ε′

]
= Pr

A,P

[∣∣Pr[A(A,P,b) = | b random]− Pr[B(A,P,b) = | b LPN]
∣∣ > ε′

]
≤ max

x∈[0,1]
Pr
A,P

[
|p1(A,P)− p0(A,P) · (1− err(P))− x · err(P)|> ε′

]
by the Bayes rule

≤ Pr
A,P

[|p1(A,P)− p0(A,P)|−err(P) > ε′] by triangle inequality

= Pr
A,P

[
AdvA(DA,P

0 ,DA,P
1) > ε′ + err(P)

]
≤ δ,

and we conclude the proof by setting ε′ = ε− err(P).

9.5. A Structured-Seed Local PRG from Sparse LPN
Our constructions rely on a simple method to compress a length-ℓ unit vector u into
d smaller unit vectors (u1, · · · ,ud) of length ℓ1/d such that each entry of u can be
reconstructed by retrieving a single entry from each ui.

169

9. Structured-Seed Local Pseudorandom Generators and their Applications

9.5.1. Compressing unit vectors

Let unitm(i) denote the procedure which, on input i ∈ [m], outputs a length-m one-hot
F2-vector with a 1 at position i. Conversely, let nzi(u) denote the procedure which, given
as input a length-m one-hot F2-vector u, returns its non-zero index i. We describe the
compression and reconstruction algorithms below:

Algorithms 1 (Comp,Rec):

Comp(u, d): on input a length-ℓ unit vector u and a compression factor d,
1. Set ℓd ← ⌈ℓ1/d⌉.
2. Compute i← nzi(u) and write i over the ℓd-ary basis as (i1, · · · , id) ∈ [ℓd]d.
3. Output (u1, · · · ,ud)← (unitℓd

(i1), · · · , unitℓd
(id)).

Rec(j, (u1, · · · ,ud)): on input an index j ∈ [ℓ] and d one-hot F2 vectors ui ∈ Fℓd
2 , with

ℓdd ≥ ℓ,
1. Write j over the ℓd-ary basis as (j1, · · · , jd) ∈ [ℓd]d.
2. Return b←

∏d
i=1 ui[ji]. // AND operation over F2.

We note in passing that since Comp(u, d) starts by computing i = nzi(u), it never
needs to store or read u in “expanded form” and can be passed i directly. We will make
use of this observation when estimating the running time of our algorithms. From the
description above, it is clear that Rec(j, (u1, · · · ,ud)) always reads exactly d bits from
its second input (u1, · · · ,ud): for every j, Rec(j, ·) is d-local. Furthermore, it is easy to
observe that on any input (j,Comp(u, d)), Rec correctly reconstructs the j-th bit of u:

Claim 9.17. For every d and length-ℓ one-hot F2-vector u, for every j ≤ ℓ, it holds that

Rec(j,Comp(u, d)) = u[j].

We say that (Comp,Rec) is correct to denote this property.

9.5.2. Warm-up: a structured-seed local PRG from regular sparse LPN

Let (w, k) = (w(n), k(n)) denote respectively the noise weight and dimension of an LPN
instance, and let n = n(k) be the (polynomial) number of samples, chosen such that w
divides n. Let c ≥ 3 and d be two constants. Let ℓ ← n/w and ℓd ← ⌈(n/w)1/d⌉. We
describe below a structured-seed local PRG whose security reduces to the hardness of
the regular sparse-LPN assumption:

• Global parameters: two constants (c, d), the noise weight w = w(n) of, the dimension
k = k(n), and the stretch n = n(k). All global parameters are implicitly passed as
inputs to all algorithms.

170

9.5. A Structured-Seed Local PRG from Sparse LPN

• Setup(1n) : sample A $←Mc
k,n. Let (a1, · · · , an) denote the rows of A (of Hamming

weight c). Output pp← A.

• SampleSeed(pp) : sample x $← Fk
2 and w unit vectors (e1, · · · , ew) $← Un/w × · · · ×

Un/w. Output seed← (x,Comp(e1, d), · · · ,Comp(ew, d)).

• PRGpp(seed) : parse seed as (x, (u1,1, · · · ,u1,d), · · · , (uw,1, · · · ,uw,d)), where each
ui,j is a unit vector over Fℓd

2 for every i ≤ w, j ≤ d. For i = 1 to n, write i as (α−
1)·(n/w)+β, with α ∈ [w] and β ∈ [n/w]. set yi ← ⟨ai,x⟩+Rec(β, (uα,1, · · · ,uα,d)).
Output (y1, · · · , yn).

Theorem 9.18. Assuming the (T, ε, δ)-hardness of the (Mc,R)-LPN problem, for any
constant d ≥ 3, (Setup,SampleSeed,PRG) is a (T −O(n), ε, δ)-secure structured-seed local
pseudorandom generator with seed length k+wd · ⌈(n/w)1/d⌉, stretch n, and locality c+d.

For example, setting k = w and n(k) = k1.99 yields a PRG with seed length s =
O(k1+0.99/d) and stretch k1.99 = Ω(s1.99/(1+0.99/d)); for d = 10, this translates to a stretch
Ω(s1.81). In general, as n approaches k2 and d grows, the stretch becomes Ω(s2−εd) for
an arbitrarily small constant εd.

Proof. Let e denote the regular vector obtained by concatenating (e1, · · · , ew). Note
that e is distributed as a random sample from Rn,w. By correctness of (Comp,Rec),
Rec(β, (uα,1, · · · ,uα,d)) = eα[β] = e[i] (the β-th entry of the α-th block of e is exactly
the i-th entry of e as i = (α− 1) · (n/w) + β). Therefore, denoting y = (y1, · · · , yn),

y = (⟨ai,x⟩+ e[i])i≤n = A · x + e.

From there, it follows immediately that breaking the (T −O(n), ε, δ)-security of (Setup,
SampleSeed,PRG) translates to breaking the (T, ε, δ)-hardness of the Alekhnovich assump-
tion (the reduction is straightforward; the O(n) term accounts for the cost of sampling
the LPN instance and compressing the unit vectors). Eventually, (c+ d)-locality follows
from the fact that each ai is c-sparse, hence the mapping x 7→ ⟨ai,x⟩ is c-local, and the
mapping Rec(β, ·) is d-local for any β ∈ [n/w]. The theorem follows.

9.5.3. Removing regularity using 2-choice hashing

The construction presented in the previous section requires the sparse-LPN assumption
to be secure when the noise has a regular structure. In this section, we explain how
to lift this restriction using efficient hashing schemes for allocating elements into bins.
We use 2-choice hashing [CRS03; SEK03] for the sake of concreteness, but we note that
our construction can be framed generically using the language of batch codes [IKOS04].
Replacing regular noise with random sparse noise in the LPN variant using hashing or
batch codes has been done in previous works [BCGI18; SGRR19; BBCCDS24b]. Here,
we show how to integrate this approach into our structured-seed local PRG without
sacrificing constant locality.

171

9. Structured-Seed Local Pseudorandom Generators and their Applications

Hash functions are commonly used to distribute items into bins. In its simplest form,
N items (u1, · · · , uN) from a universe U can be placed into L ·N bins (1, · · · , N) (for a
suitable constant L) using a hash function h : U→ [L ·N], by placing each item ui at
position h(i); when h is a random function, it is well known that with high probability, the
maximum load across all bins will be O(logN/log logN) [RS98]. The question of finding
alternative hashing strategies that result in a more balanced load has been an active
and fruitful field of research [PSWW18; PRTY19; SGRP19]. Typically, these improved
strategies rely on multiple hash functions (h1, h2, · · ·), combined with an allocation scheme
to determine, for each item u, which hash function should be used to allocate u to a bin.

For our application, we will need a hashing scheme that guarantees, with probability
1−O(1) (over the random choice of the hash functions, for an arbitrary set of items to be
placed) that each bin will contain a constant number of items. There are multiple options
with different degrees of simplicity and parameter tradeoffs. For the sake of concreteness,
we focus on one of the simplest possible solutions, called 2-choice hashing [SEK03].

Definition 9.9 (Allocation). Let U be a set, L be a constant, and N be an integer. Let
h0, h1 be two hash functions from U to [L ·N]. For any N -tuple u = (u1, · · · , uN) ∈ UN ,
we define an allocation of u into the bins 1 · · ·N with respect to (h0, h1) to be a vector
b ∈ FL·N

2 indicating which bin each item is mapped to: for any i ∈ [N], the item ui

is mapped to the bin hb[i](ui). Given (h0, h1), a tuple u, and an allocation b, we let
Loadi(h0, h1,u,b) denote the load of the bin i (i.e. the total number of indices j such
that hb[j](uj) = i).

We will rely on the following lemma:

Lemma 9.19 (2-choice hashing [SEK03; PRTY19]). Let U be a set, L be a constant,
and N be an integer. Then, there exists a deterministic algorithm Alloc running in time
O(N logN) which, on input two hash functions h0, h1 from U to [L ·N] and an N -tuple
u ∈ UN , returns an allocation b, and such that for every u ∈ UN ,

Pr
h0,h1

[
b← Alloc(h0, h1,u) : max

i≤L·N
Loadi(h0, h1,u,b) > L+ 1

]
≤ O

(1
NL

)
.

For notational convenience, we will define the quality of a pair of hash function
(h0, h1) as the fraction of vectors u ∈ UN that have a good allocation (i.e., such that
maxi≤L·N Loadi(h0, h1,u,b) ≤ L+ 1):

Definition 9.10 (Quality). We call quality of a pair (h0, h1) of functions from U to
[L ·N], and denote Quality(h0, h1), the quantity

Quality(h0, h1) := Pr
u $←UN

[
b← Alloc(h0, h1,u) : max

i≤L·N
Loadi(h0, h1,u,b) > L+ 1

]
.

Then, Lemma 9.19 says that on average, a random choice of (h0, h1) has quality
1−O(1/NL).

172

9.5. A Structured-Seed Local PRG from Sparse LPN

9.5.4. Sampling the seed

As for the regular construction, we assume that all algorithms implicitly receive as input
global parameters gp = (w, k, n, c, d, L) where w = w(n) is the noise weight parameter,
k = k(n) is the LPN dimension, n = n(k) denotes the stretch (or number of samples),
and c, d ≥ 3 and L ≥ 1 denote three constants.

At a high level, our construction proceeds by using 2-choice hashing to allocate the
nonzero entries of the noise vector into unit vectors, such that every entry of the noise
vector can be reconstructed by looking at one position in 2(L + 1) unit vectors, and
compressing these unit vectors with the compression algorithm Comp. In more details,
assume that the setup Setup(1n) produces a matrix A $←Mc

k,n together with two hash
functions (h0, h1) (we ignore for now the issue of how “good” hash functions (h0, h1) are
selected). Then, SampleSeed(pp) proceeds as follows:

Algorithm 2 SampleSeed(A, h0, h1):

1. Sample x $← Fk
2.

2. Sample (the positions of) a noise vector u $← [n]w.

3. Set b← Alloc(h0, h1,u). If maxi≤Lw Loadi(h0, h1,u,b) > L+ 1, go to Item 2.

4. For i = 1 to Lw, define vi ∈ Fn
2 as follows:

vi ←
⊕

j:hb[j](u[j])=i

unitn(u[j]).

That is, for every entry j of u mapped to the bin i via the allocation (computed as
hb[j](u[j])), sum 1 to the position u[j] in vi. Note that by construction, HW(vi) ≤
L+ 1.

5. Write vi as a sum of L+1 (unit or zero) vectors vi = v0
i + · · ·+vL

i with HW(vℓ
i) ≤ 1

for ℓ ∈ {0, · · · , L}.

6. Output seed← (x, (Comp(v0
i , d), · · · ,Comp(vL

i , d))i≤Lw).

Note that SampleSeed does not have to work with an expanded representation of the
vectors vi: the vi can be manipulated in compact form (as the list of their nonzero
entries, of size at most 2) throughout the entire execution (including the execution of
Comp, since for any v, Comp(v, d) only needs the nonzero entry i = nzi(v), as noted in
Section 9.5.1).

173

9. Structured-Seed Local Pseudorandom Generators and their Applications

9.5.5. Expanding the seed
Let us denote e = ⊕w

j′=1 unitn(u[j′]) the noise vector in expanded form. Observe that in
the SampleSeed process above, every vector unitn(u[j′]) is XORed to exactly one vi: the
one with index i = hb[j′](u[j′]). Therefore, for every position j ∈ [n] of e, two cases can
occur:

1. Either there exists j′ such that j = u[j′] (i.e., j is a noise position of e). Then the
j-th entry of vi with i = hb[j′](u[j′]) is set to 1, and the j-th entry of the alternative
option vi′ , where i′ = hb̄[j′](u[j′]) (i′ is the index of the “other bin”, not selected
by the allocation) stays at 0.

2. Or there is no such j′ (i.e., j is not a noise position), in which case both vi0 [j] and
vi1 [j] are equal to 0, where (i0, i1) = (h0(j), h1(j)).

In both cases, it holds that e[j] = vi0 [j]⊕vi1 [j], with (i0, i1) = (h0(j), h1(j)). Hence, to
“read” e[j], it suffices to read the j-th entry in vi0 and vi1 for (i0, i1) = (h0(j), h1(j)). This
can be done by reading d entries in each of Comp(v0

i0 , d), · · · ,Comp(vL
i0 , d),Comp(v0

i1 , d), · · · ,Comp(vL
i1 , d)

(hence 2d(L + 1) entries in total) by the d-locality of (Comp,Rec). Concretely, given
parameters pp = (A, h0, h1) and a seed seed = (x, (Comp(v0

i , d), · · · ,Comp(vL
i , d))i≤Lw),

the j-th entry of the noise vector e ∈ Fn
2 (whose nonzero entries are given by u) is

reconstructed as follows: compute (i0, i1)← (h0(j), h1(j)). Set

e[j]←
⊕

α≤L,β∈{0,1}
Rec(j,Comp(vα

iβ
, d)) =

⊕
α≤L,β∈{0,1}

vα
iβ

[j] = vi0 [j]⊕ vi1 [j].

The detailed procedure is represented below.

Algorithm 3 PRGpp(x, (Comp(v0
i , d),Comp(v1

i , d))i≤w):

1. Parse pp as (A, h0, h1).

2. For j = 1 to n, set (ij0, i
j
1)← (h0(j), h1(j)).

3. For j = 1 to n, set

yj ← ⟨aj ,x⟩+
∑

0≤α≤L
β∈{0,1}

Rec
(
j,Comp

(
vα

ij
β

, d

))
.

4. Output (y1, · · · , yn).

To complete the construction, it remains to explain how (h0, h1) are sampled by
Setup. Concretely, the algorithm SampleSeed requires (h0, h1) to be “good” in the
following sense: for a random choice of noise positions u $← [n]w in step 2, it should
hold with sufficiently large probability p that maxi≤Lw Loadi(h0, h1,u,b) ≤ L+ 1 using

174

9.5. A Structured-Seed Local PRG from Sparse LPN

the allocation b← Alloc(h0, h1,u), since the expected runtime of SampleSeed grows as
1/p. In other words, we want Quality(h0, h1) to be sufficiently large (with overwhelming
probability over the choice of (h0, h1)).

Lemma 9.19 guarantees that for a fixed choice of u, a random choice of (h0, h1) has
probability close to 1 of yielding a good allocation. Looking ahead, our Setup procedure
builds upon Lemma 9.19 to produce with overwhelming probability a pair (h0, h1) that
yield a good allocation for a constant fraction of all u’s (i.e., Quality(h0, h1) is bounded
below by a constant). This bounds p by a constant, causing only a constant blowup to
the expected runtime of SampleSeed1.

9.5.6. Testing the hash functions

We let Fn,Lw denote the set of all functions from [n] to [Lw]. Our setup procedure builds
upon a Test subroutine to test whether pairs of hash functions (h0, h1) are sufficiently
good. The procedure is represented below:

Algorithm 4 Test(1n, h0, h1):

1. Set good← 0 and T ← 42 · n. For j = 1 to T ,
a) Sample uj

$← [n]w.
b) Set bj ← Alloc(h0, h1,uj).
c) If maxi≤Lw Loadi(h0, h1,uj ,bj) ≤ L+ 1, set good← good + 1.

2. If good ≥ 0.3 · T , output 1. Else, output 0.

In other words, the procedure Test computes an empirical estimate of the quality of
(h0, h1) on a random test set of T = 42 · n vectors u, and outputs 1 iff the empirical
quality is at least 30% (see Lemma 9.20 for a detailed explanation of the choice of number
of vectors in the random test set and the empirical quality). Our Setup algorithm will
rely on two properties of Test:

1. (few false positive) the probability (over the randomness of Test) that Test(1n, h0, h1) =
1 but Quality(h0, h1) < 0.2 is negligible;

2. (high success rate) the probability (over the random choice of (h0, h1) and the
randomness of Test) that Test(h0, h1) = 1 is bounded below by a constant.

Both proofs are elementary applications of standard tail bounds; we prove them in
Section 9.5.8.

1We note that one can make the runtime strictly polytime by adding a bound λ on the number of retries,
where lambda is some security parameter, and aborting if the bound is reached. This gives a strict
polytime algorithm with a n blowup in runtime and a negligible failure probability (1 − p)n.

175

9. Structured-Seed Local Pseudorandom Generators and their Applications

9.5.7. Sampling the hash functions

The setup procedure is represented below.

Algorithm 5 Setup(1n, k, n):

1. Sample A $←Mc
k,n. Let (a1, · · · ,an) denote the rows of A (of Hamming weight c).

2. Sample (h0, h1) $← Fn,Lw ×Fn,Lw.

3. If Test(1n, h0, h1) = 0, go to Item 2.

4. Output pp← (A, h0, h1).

In Section 9.5.8, we will prove two lemmas: Lemma 9.21 shows that Test succeeds
with probability at least 1/2 (“Test succeeds often enough”) and Lemma 9.20 shows that
(h0, h1) have good quality Quality(h0, h1) ≥ 0.2 with overwhelming probability (“Test
has few false positives”). We discuss consequences for the running time of Setup and
SampleSeed below.

Since each Test succeeds with probability at least 1/2 by Lemma 9.21, Setup(1n)
executed a constant expected number of Test (alternatively, we can let Setup run up to n
tests and abort if none succeeded to get a strict bound on the running time and negligible
abortion probability). Furthermore, by Lemma 9.20, the probability that the functions
(h0, h1) output by Setup(1n) have quality Quality(h0, h1) < 0.2 is at most 1/2n. In turn,
this implies that the algorithm SampleSeed will succeed in sampling u in step 3 after at
most 5 tries in expectation.

9.5.8. Properties of Test

9.5.8.1. Test has few false positives.

We prove the following:

Lemma 9.20. Let (h0, h1) be two functions from Fn,Lw such that Quality(h0, h1) < 0.2.
Then,

Pr
[
Test(1n, h0, h1) = 1

]
≤ 1

2n
.

Proof. Let (h0, h1) be two functions from Fn,Lw such that Quality(h0, h1) < 0.2. Let Xj

denote the random variable, for j = 1 to T , taking value 1 if maxi≤Lw Loadi(h0, h1,uj ,bj) ≤
L + 1 and 0 else. Note that the random variables X1, · · · , XT are independent. Let
X ←

∑T
j=1Xj and µ← E[X]. Note that µ = T · E[X1] = T ·Quality(h0, h1) < 0.2T . Let

176

9.5. A Structured-Seed Local PRG from Sparse LPN

us denote x← µ/T < 0.2. Then, by the Chernoff bound (Lemma 9.1),

Pr[X ≥ 0.3T] ≤ exp

−(0.3T
µ
− 1

)2

· µ3


= exp

(
−0.03T 2

µ
+ 0.2T − µ

3

)

= exp
(
−
(0.03

x
− 0.2 + x

3

)
· T
)
.

Now, writing f(x) = 0.03/x − 0.2 + x/3, we have f ′(x) = (1 − (0.3/x)2)/3 < 0 since
x < 0.3. Hence, f(x) is decreasing and bounded above by f(0.2) = 1/60, which yields

Pr[X ≥ 0.3T] ≤ exp
(
−T/60

)
= 2−42·(log2 e/60)·n ≤ 2−n,

which concludes the proof.

9.5.8.2. Test succeeds often enough.

We prove the following:

Lemma 9.21. There exists an integer N such that for all w, n ≥ N

Pr
h0,h1

$←Fn,Lw

[
Test(1n, h0, h1) = 1

]
≥ 1

2 .

Proof. The proof follows immediately from the following (stronger) claim:

Claim 9.22. There exists an integer N such that for all w ≥ N ,

Pr
h0,h1

$←Fn,Lw

[
Quality(h0, h1) ≥ 0.4

]
≥ 1

1.9 .

Furthermore, if (h0, h1) are two functions from Fn,Lw such that Quality(h0, h1) ≥ 0.4,

Pr
[
Test(1n, h0, h1) = 0

]
≤ 1

29n
.

We prove each part of the stronger claim in turn. The first part of claim is an immediate
application of the Markov inequality: by Lemma 9.19 and Markov inequality (Lemma 9.2),

Pr
h0,h1

$←Fn,Lw

[
Quality(h0, h1) ≥ 1−O(1/wL)

1.9

]
≥ 1

1.9 ,

and for a large enough w, (1−O(1/wL))/1.9 ≥ 0.9/1.9 > 0.4. For the second claim, the
proof is similar to that of (1), with a Chernoff bound in the other direction: let (h0, h1) be

177

9. Structured-Seed Local Pseudorandom Generators and their Applications

two functions from Fn,Lw such that Quality(h0, h1) < 0.2. Then by the Chernoff bound,

Pr[X < 0.3T] ≤ exp

−(1− 0.3T
µ

)2

· µ2


= exp

(
−0.03T 2

µ
+ 0.2T − µ

3

)

= exp
(
−
(0.03

x
− 0.2 + x

3

)
· T
)
.

Since Quality(h0, h1) = µ/T = x ∈ [0.4, 1), writing f(x) = 0.03/x − 0.2 + x/3, we
have this time f ′(x) = (1− (0.3/x)2)/3 > 0: f(x) is increasing and bounded above by
f(1) = 49/300. Then,

Pr[X ≥ 0.3T] ≤ exp
(
−49T/300

)
= 2−42·(49 log2 e/300)·n ≤ 2−9n,

which concludes the proof.

9.5.9. Efficiency and Security
Let HL = {Ph0,h1} denote the following family of predicates: given two hash functions
h0, h1 ∈ Fn,Lw and an input u ∈ [n]w, Ph0,h1(u) samples b ← Alloc(h0, h1,u). It
returns 0 if maxi≤Lw Loadi(h0, h1,u,b) > L+ 1, and 1 otherwise. We now summarize
the efficiency properties of our construction (Setup, SampleSeed,PRG) described in the
previous subsections.

Theorem 9.23. Let L ≥ 1 be a constant. Assume the (T, ε, δ)-hardness of the HL-
conditioned (Mc

n,k,Xn,w)-LPN problem, for some constant c ≥ 3. Let d ≥ 2 be a constant.
Then there exists a (T − O(n), ε, δ − 1/2n)-secure structured-seed local pseudorandom
generator (Setup,SampleSeed,PRG) with the following characteristics:

• Parameter size: |pp|= n · (c log k + 2 logw);

• Seed length: |seed|= k + w · L(L+ 1)d · ⌈n1/d⌉;

• Stretch: n;

• Locality: c+ 2(L+ 1)d.

In addition, the algorithms have the following running time:

• Setup(1n) runs in time n · Õ(n+ nw),

• SampleSeed(pp) runs in time O(k + w · (n(logw + logn) + n1/d)).

Before we move on with the security analysis, we briefly overview each of the efficiency
properties. We analyze runtime in a RAM model for simplicity, but note that all our
algorithms can easily be implemented with similar runtime in a circuit model. The

178

9.5. A Structured-Seed Local PRG from Sparse LPN

size of pp and seed, and the stretch, can be read immediately from their description
and that of Comp. As for locality, computing ⟨aj ,x⟩ requires reading c bits of x (since
HW(aj) = c), and computing Rec(j,Comp(vα

ij
β

, d)) for α ≤ L, β ∈ {0, 1} requires reading
d bits of Comp(vα

ij
, d) each time (hence 2(L+ 1)d bits in total).

The running time of Setup is decomposed as follows: sampling A requires sampling
c · n elements of [k] in time O(n log k). Sampling (h0, h1) requires sampling 2n elements
of [w], in time O(n logw), and running Test(1n, h0, h1) requires O(n) samples over [n]w
(each in time w · logn), computations of allocation and of the maximum load (in time
O(w · (logw + logn)). Furthermore, with overwhelming probability, Setup terminates
after at most n executions of Test, hence the bound of n · Õ(n+nw) on the total runtime.

Eventually, the running time of SampleSeed is decomposed as follows: sampling x
requires tossing k coins. Sampling u $← [n]w, computing the allocation, and computing
the maximum load runs in time O(w · (logn+ logw)). Then, computing the (v0

i , · · · ,vL
i)

(in implicit representation, as nzi(v0
i), · · · , nzi(vL

i)) takes time O(w · (logn+ logw)), and
compressing them takes time O(w · n1/d). Eventually, with overwhelming probability,
SampleSeed produces u after at most n executions of the steps 2 and 3, hence the bound
of O(k + w · (n(logw + logn) + n1/d)) on the total runtime.

Security analysis. We prove security of Theorem 9.5.9 under the (T, ε, δ)-hardness of the
HL-conditioned (Mc

n,k,Xn,w)-LPN problem. Let e denote the noise vector, which is sam-
pled randomly from Xn,w. We showed in Section 9.5.5 that⊕α≤L,β∈{0,1} Rec(j,Comp(vα

iβ
, d)) =

e[j] for every j ≤ n. Therefore, denoting y = (y1, · · · , yn),

y = (⟨aj ,x⟩+ e[j])i≤n = A · x + e.

It follows that distinguishing y from random is perfectly equivalent to breaking the the
HL-conditioned (Mc

n,k,Xn,w)-LPN problem.

Reduction to sparse LPN. Plugging the reduction from predicate-conditioned sparse-
LPN to sparse-LPN from Lemma 9.16 yields a structured-seed local PRG under the
sparse-LPN assumption. However, this comes at a loss err(H) in the advantage bound ε.
We have

err(H) = max
e

Pr
h0,h1

[h0, h1 are bad for e] ≤ O
(1
wL

)
.

Therefore, using our concrete formulation of the sparse-LPN assumption (Assumption 1),
we obtain a (T, ε, δ)-secure (c+2(L+1)d)-local PRG with ε = O(1/wL) and δ = Ω(kη)c−2,
for a suitable constant η > 0.

9.5.10. Structured-seed local PRGs beyond quadratic stretch

If we plug our Parameter Set 1 in Section 9.5.9, we obtain a PRG with seed length
|seed|= O(nn1/d)·k and stretch n = k1+η, where η is a constant arbitrarily close to 1 (using
the constant c(η) = 1/(1− η)). As k grows (polynomially), this means that the stretch

179

9. Structured-Seed Local Pseudorandom Generators and their Applications

can be made as large as |seed|2−γ for an arbitrarily small constant γ = γ(η, d, logn k).
However, the construction cannot achieve a super-quadratic stretch directly.

In general, the stretch of a polynomial-stretch local PRG can always be extended
to an arbitrary polynomial stretch (keeping the locality constant) by composing the
PRG with itself [IKOS08]. However, this does not hold anymore for a structured-seed
PRG, since the output distribution of the PRG does not match the required seed
distribution. Nevertheless, we show in this section that the stretch of our construction
can be extended to an arbitrary polynomial via self-composition. At a high level, we
leverage the observation that the seed seed of our construction has two components:

• A random bitstring x of length k, and

• The items Comp(vj
i), of total length O(w · n1/d).

Above, the structured part of the seed grows only with w, while the random part of the
seed grows with k. We leverage this observation by making w as small as we possibly
can (while keeping the stretch n to be polynomial, n ≥ k1+γ/2 for some constant γ > 0),
and recursively invoke the structured-seed local PRG to generate the length-k random
part of the seed. The relevant set of parameters of the sparse-LPN assumption is given
in Parameter Set 2; details follow.

Parameters. For simplicity and concreteness, we use the following parameters through-
out:

• γ > 0 denotes an arbitrarily small constant. Fix L = 1.

• n is set to k1+γ/2 and w to n · kγ , according to Parameter Set 2 (where c = c(γ) ≥
1 log γ/(log γ − 1))

• We choose a large dimension k ≥ n1/γ2 and set d ≥ 1/γ + 1/2. Note that this
guarantees that n ≤ kγ and n1/d ≤ kγ . Therefore, we have w · n1/d ≤ k3γ .

With the set of parameters above, our structured-seed local PRG has the following
characteristics:

• Seed length |seed|= k +O(k3γ) (where the O(·) hides a factor proportional to 1/γ
and the size-k part is the random part of the seed),

• Stretch n = k1+γ/2.

We view the construction as shrinking n (pseudorandom) bits into a seed of size (dominated
by) k = n1/(1+γ/2). Let us denote θ(γ) = 1/(1 + γ/2) < 1 this shrinkage parameter.

Construction. Equipped with the parameters above, we are ready to describe our
construction. Let s be the target expansion; that is, we want to map |seed| bits to |seed|s
bits. Set γ such that 3γθ(γ) = 3γ/(1 + γ/2) = 1/2s, and let t = t(s) be a constant
such that θt ≤ 1/2s. For readability, we describe the construction as a sequence of t
seed-shrinking steps:

180

9.5. A Structured-Seed Local PRG from Sparse LPN

• Step 1: fix the target output length n: we aim to generate a pseudorandom vector
x0 ∈ Fn

2 . Set k ← nθ. Define seed1 to be the seed of a structured-seed local PRG
with stretch n, with parameters (n, k, w, L, d, γ, c) as defined above. We have

seed1 = (x1, S1 = (Comp(v0
i , d), · · · ,Comp(vL

i , d))i≤w),

with |x1|= nθ and |S1|= O(n3γθ) = O(n1/2s).

• Step 2: in this step, we shrink x1 ∈ Fnθ

2 using again our structured-seed local PRG.
Writing n1 = k = nθ, we generate a pseudorandom x1 using the seed:

seed2 = (x2, S2),

where |x2|= nθ
1 = nθ2 and |S2|= O(n1/2s

1) ≤ O(n1/2s).

• Step i: we maintain the invariant that we generate a pseudorandom vector xi−1 ∈
Fnθi−1

2 using a seed seedi = (xi, Si) with |xi|= nθi and |Si|≤ O(n1/2s).

After t steps of the seed-shrinking step, we end up with a final seed

seed = (xt, St, St−1, · · · , S1),

where |xt|≤ nθt ≤ n1/2s, and |Si|≤ O(n1/2s). The total seed length is therefore O(n1/2s)
(where the O(·) hides a factor t), which is below n1/s for a large enough n. Security follows
immediately from a sequence of t hybrids that “undo” the seed-shrinking steps, replacing
everytime xi−1 with a random string given a random seed (xi, Si) for the structured-
seed local PRG, under the hardness of the H1-conditioned sparse-LPN problem. Due
to the t hybrids, the reduction loses a factor t in the parameters (ε, δ) of the LPN
problem. Plugging in the reduction from predicate-conditioned sparse-LPN to sparse-
LPN from Lemma 9.16 yields:

Theorem 9.24. For every s > 1, there exists constants γ such that 3γ/(1 + γ/2) = 1/2s,
θ = 1/(1 + γ/2), c ≥ 2 log γ/(log γ − 1), d ≥ 1/γ + 1/2, and t such that θt ≤ 1/2s,
for all large enough n, if the (Sc, E)-LPN problem with dimension nθi and number of
samples nθi−1 is (2o(n), εi = Ω(1/n2γθi

, śδi = Ω(1/nθi(1+γ/2))-secure for i = 1 to t, then
there exists a (T,∑t

i=1 εi,
∑t

i=1 δi)-secure structured-seed constant-locality pseudorandom
generator (Setup, SampleSeed,PRG) with seed size |seed|≤ n1/s.

9.5.11. Structured-seed local PRGs beyond quadratic stretch

In this section, we show how to achieve a structured-seed local PRG with a polynomial
stretch by recursive our structured-seed local PRG.

Let (w, k) = (w(n), k(n)) denote respectively the noise weight and dimension of an
instance (A,x, e) ∈ (Mc

n,k,Sn,w)-LPN, and let n = n(k) be the (polynomial) number of
samples. For the security of spare-LPN we set the number of samples n = k1+η, and
noise w = n · k for η ∈ (0, 1) (Lemma 9.4.4). Let c ≥ 3 and d be two constants.

181

9. Structured-Seed Local Pseudorandom Generators and their Applications

Intuitively, given a local structured-seed PRG PRG = (Setup, SampleSeed,PRGpp) with
the security relying on (Mc

n,k,Sn,w)-LPN problem, we construct a new local PRG with a
larger stretch by: taking the output of PRGpp and defining it as a part of seed of the new
local PRG that have security based on (Mc

n′,n,Sn′,w′)-LPN problem (n′, w′ are chosen
such that the spare-LPN problem is hard). Taking advantage of noise compression, we
obtain a new local structured seed PRG with the following parameters:

• The size of seed : k + w · (1 + 2d · ⌈n1/d⌉) + w′ · (1 + 2d · ⌈n′1/d⌉) = k + (1 + 2d ·
⌈n1/d⌉)(w + w′) = k(1 + λ · (1 + kη)(1 + 2d · ⌈k(1+η)/d⌉).

• The stretch n′ = n1+η = k(1+η)2 .

We generalize below a structured-seed local PRG whose security reduces to the hardness
of the (Mc

n1,k1
,Sn1,w1) sparse-LPN assumption in τ -recursive times:

• Global parameters: a repetition τ ∈ N, two constants (c, d), the noise weight w1 =
w1(k, λ) of, the dimension k1 = k1(n), and the n1 = n1(k1) satisfy Lemma 9.4.4.
All global parameters are implicitly passed as inputs to all algorithms.

• Setup(1n) : for all i ∈ [τ],
– Set ki = ni and ni = (ni−1)1+η. // to make sure spare-LPN assumption hold

– Sample (Ai, h
i
0, h

i
i)

$← Setup(1λ, ki, ni) (Algorithm 5). // to remove the regu-
larity of noise

Let (ai
1, · · · ,ai

n) denote the rows of Ai (of Hamming weight c). Output pp ←
(Ai, h

i
0, h

i
1)i≤[τ].

• SampleSeed(pp) : Sample x $← Fk1
2 .

For all i ∈ [τ],

– Sample ei
$← Sni,wi . // sample the noise vector

– Define ((Comp(v0
i,j , d),Comp(v1

i,j , d))j≤wi)
$← SampleSeed(ei, h

i
0, h

i
1) (Algo-

rithm 2). // compress noise using Comp and 2-choice hash
Output seed← (x, (Comp(v0

i,j , d),Comp(v1
i,j , d))i≤τ,j≤wi).

• PRGpp(seed) : parse seed as (x, (Comp(v0
i,j , d),Comp(v1

i,j , d))j≤wi) for all i ≤ τ .
For i = 1 to τ :

– Compute yi = PRGpp(x,Comp(v0
i,j , d),Comp(v1

i,j , d))j≤wi) (Algorithm 3). //
Output of each PRG

– Set x := yi. // define the output of PRG at i-th iteration as the randomness
input of i+ 1-th iteration

Output yτ := (y1, · · · , ynτ).

182

9.6. A Structured-Seed Local PRG from Expand-Accumulate Codes

Theorem 9.25. Assume the (T, ε, δ)-hardness of the (Mc
n,k,Sn,w)-LPN problem, for

some constant c ≥ 3. Let d, τ ≥ 2 be a constant. Then there exists a (? , ε, δ − 1/2n)-
secure structured-seed local pseudorandom generator (Setup,SampleSeed,PRG) with the
following characteristics:

• Parameter size: |pp|= ∑τ
i=1 ni · (c log ki + 2 logwi);

• Seed length: |seed|= ki +∑τ
i=1wi · (1 + 2d · ⌈n1/d

i ⌉);

• Stretch: n = k(1+η)τ ;

• Locality: τ(c+ 4d).

In addition, the algorithms have the following running time:

• Setup(1n) runs in time n · Õ(∑τ
i=1(ni + nwi)),

• SampleSeed(pp) runs in time O(∑τ
i=1(ki + wi · (n(logwi + logni) + n

1/d
i)).

9.6. A Structured-Seed Local PRG from Expand-Accumulate
Codes

This section shows how to achieve concrete security for our structured-seed local PRG
based on another variant of LPN assumption, i.e., Expanded-Accumulate LPN (EA−LPN).

Definition 9.11 (Binary Accumulator Matrix [BCGIKRS22]). For a positive integer k,
the accumulator matrix H ∈ Fk×k

2 is the matrix with 1’s on and below the main diagonal,
and 0’s elsewhere. In particular, if H · x = y with x,y ∈ Fk

2 , we have the following
relations:

yi :=
i⊕

j=1
xj ∀i ∈ [k] yi := xi ⊕ yi−1 ∀2 ≤ i ≤ k.

Definition 9.12 (Expand-Accumulate (EA) codes [BCGIKRS22]). For any integer
k ∈ N, let n = n(k) be a polynomial. For a desired density p ∈ (0, 1), a generator matrix
for an expand-accumulate (EA) code is sampled as follows:

• Sample row vectors b⊺
1, . . . ,b⊺

n
$← Bk,k·p independent and define

B =


b⊺

1
b⊺

2
...

...
...

b⊺
n


.

183

9. Structured-Seed Local Pseudorandom Generators and their Applications

• Output the matrix product BH, where H ∈ Fk×k
2 is the accumulator matrix.

We use Ap
k,n to denote a code sampled from this distribution and the sampling of the

corresponding generator matrix is denoted A
$← EA.Setup(k, n, p).

The EA − LPN assumption is LPN assumption where the matrix A ∈ Fn×k
2 is sam-

pled from Ap = Ap
k,n. For a suitable parameter set [BCGIKRS22], the assumption

(Ap,Sw,F2)-LPN(k, n) holds.

9.7. Applications
In this section, we identify works that make use of a local PRG in their main theorems and
explore the possibility of substituting their PRG with our own construction. These works
span a variety of applications: indistinguishability obfuscation (iO) [JLS21], constant-
overhead secure computation [IKOS08], sublinear secure computation [BCM23], and
hardness of learning [DV21]. At a high level, we can substitute local PRGs with structured-
seed local PRGs in these works because they do not rely on the seed being uniform, but
only require the seed to be short, and the sampling of the seed to be efficient.

We note that in contrast, in other papers such as [BCGIKRS23], it is not obvious how
to use our PRG out of the box, because the output is being used as input to another
invocation of the PRG, and in this case our idea breaks down as the seed is not structured
anymore.

9.7.1. Indistinguishability obfuscation
Indistinguishability obfuscation (iO) is a cryptographic primitive that allows to obfus-
cate the code of a program such that no polynomial-time adversary can distinguish
which of two (equal size) functionally equivalent programs has been obfuscated. Code
obfuscation has been formalized already in the early 2000s as a cryptographic building
block, by Hada [Had00] and Barak et al. [BGIRSVY01], along with a number of early
positive [Can97; LPS04; Wee05; HRsV07; HMS07] and negative [BGIRSVY01; GK05;
Wee05] results. In a recent sequence of breakthrough results culminating with [JLS21],
Jain, Lin, and Sahai have shown how to base indistinguishability obfuscation on the
subexponential hardness of four assumptions:

• the LWE assumption,

• the learning parity with noise over a general prime field Fp,

• a boolean local PRG in NC0,

• the Decision Linear assumption on symmetric bilinear groups of prime order.

At the heart of their construction is a sequence of transformations starting from weak
forms of functional encryption which are progressively boosted to full-fledged indistin-
guishability obfuscation. Above, the local PRG is used for constructing a structured-seed

184

9.7. Applications

PRG. We note that the notion of structured-seed PRGs in [JLS21] differs from the notion
of structured-seed local PRG considered in our work. However, it follows by inspection
that the construction of structured-seed PRG of [JLS21] goes through identically if the
boolean local PRG is replaced by a structured-seed local PRG.

We mention one technicality, though: the local PRG used in [JLS21] needs to have
subexponential security. For our construction from regular sparse-LPN, one can rea-
sonably conjecture security against subexponential time adversaries while keeping ε
inverse-subexponential: this follows directly from our concrete version of the sparse-LPN
assumption (see Assumption 1) by setting T to subexponential in n. However, the value
of δ remains always noticeable due to the non-negligible probability of sampling a matrix
with a small dual distance. One can make δ negligible using the alternative matrix
distribution introduced in [AK19], but this only makes δ slightly negligible, while the
construction requires δ to be subexponentially small.

We note that a very similar issue happens with (standard) local PRGs, which require
an explicit hypergraph with good expansions property, while random hypergraphs will
only satisfy the required property with probability 1−1/poly. There are two workarounds
to this issue. The first one is identical to the solution that was used in [JLS21]: using
an explicit choice of the sparse matrix A and assuming the subexponential hardness of
sparse-LPN with respect to this matrix; then, Assumption 1 implies that most choices
of A will yield plausible candidates. This works directly, with the caveat that it only
provides a non-uniform construction of iO (which would become uniform if an efficiently
sampleable distribution over sparse matrices with subexponentially small probability of
having a small dual distance is found in the future).

The second solution is to observe that except with subexponentially small probability,
if we sample multiple parameters pp for a structured-seed local PRG, at least one of
them will be secure against subexponential adversaries. Then, as observed in [JLS22],
this implies in turn that the construction of functional encryption will yield multiple
candidates functional encryption schemes such that except with subexponentially small
probability, one of them is subexponentially secure. Then, one can obtain a full-fledged
functional encryption scheme out of these schemes using FE combiners (see Remark 3.1
in [JLS22]). We get the following:

Theorem 9.26 (informal). Assume sub-exponential security of the following assumptions:

• the LWE assumption,

• the learning parity with noise over a general prime field Fp,

• the sparse-LPN assumption with regular noise,

• the Decision Linear assumption on symmetric bilinear groups of prime order,

there exists a (subexponentially secure) indistinguishability obfuscation for all polynomial-
size circuits. Further, assuming only polynomial security of the aforementioned assump-
tions, there exists collusion-resistant public-key functional encryption for all polynomial-
size circuits.

185

9. Structured-Seed Local Pseudorandom Generators and their Applications

We note that the follow-up work of [JLS22] gets rid of the LWE assumption by making
a more involved use of the local PRG. It is not immediately obvious how to replace
the local PRG by a structured-seed local PRG in their more involved construction,
because it requires in particular an affine randomized encoding construction that relies
on self-composing the PRG (using its pseudorandom output as a seed), which does not
work with structured-seed local PRGs. We had preliminary results in this direction, but
in light of the recent concurrent and independent work of [RVV24] that focuses precisely
on this application, and which provides a full-fledged solution to overcoming this obstacle
(and others), we refrain in this work from pursuing this route further.

9.7.2. Constant-overhead secure computation
The seminal work of Ishai, Kushilevitz, Ostrovsky, and Sahai [IKOS08] showed that
assuming polynomial-stretch local pseudorandom generators (and oblivious transfers), any
two-party functionality can be securely computed with constant computational overhead
over the cost of evaluating the functionality in the clear. In this section, we observe
that the local PRG in [IKOS08] can be replaced by a structured-seed local PRG. We
summarize the result in Theorem 9.27 below.

Theorem 9.27. Assume the existence of a polynomial-stretch structured-seed local PRG
in NC0, denoted as G : {0, 1}n → {0, 1}m, and of a standard OT protocol. Given a
family of circuit C = {Cn} of polynomial size s(n) that defines a two-party computation
functionality f , there exists a two-party protocol πf that realizes f in the semi-honest
setting where each party in πf can be implemented by a circuit of size O(s(n)).

As a direct corollary, we obtain that secure two-party computation with constant
computational overhead can be based on (oblivious transfer and) the hardness of regular
sparse-LPN, or that of H-conditioned sparse-LPN, diversifying the set of assumptions
under which extreme efficiency can be achieved in secure computation.

We sketch the proof of Theorem 9.27 below. The construction of [IKOS08] uses the
following sequence of steps:

1. Using the GMW protocol [GMW87b], given black-box access to O(s) oblivious
transfers, any two-party computation for a circuit of size s can be securely evaluated
using O(s) bits of communication and O(s) bit operations. Hence, building constant-
overhead secure computation reduces to the problem of constructing O(s) OTs with
a constant computational overhead. In particular, denoting p = O(s), [IKOS08]
shows how to construct p bit-OTs using a local PRG and √p OT instances (on
strings of length √p) where each party can be implemented by a circuit of size
O(p).

2. Let g be a functionality parametrized with a local PRG G which, on input a seed
seed from the receiver and p pairs of bits (σi

0, σ
i
1)i≤p from the sender, outputs

(σi
G(seed)i

)i≤p to the receiver. Then, given black-box access to g, there is a constant-
overhead construction of a secure protocol to generate p (chosen) bit-OTs. The
protocol follows from the standard information-theoretic derandomization of OT

186

9.7. Applications

with random selection bits [Bea92], using G(seed) instead of a random mask to
hide the selection bits. Since G(seed) can be computed in linear time and the
derandomization involves only O(p) XORs and ANDs, the claim follows.

3. The core component of the reduction is the constant-overhead reduction from
securely implementing g to a black-box access to √p OTs on strings of total length
O(p). This reduction uses decomposable randomized encodings and builds upon
the fact that g ∈ NC0.

Above, step 1 and 3 remain perfectly identical if G is replaced by a structured-seed
local PRG: in particular, g has the description of the stretching algorithm PRG hardcoded,
which is in NC0, and is oblivious to how the seed seed was sampled. The only difference
is in step 2, where the receiver must be instructed to sample seed $← SampleSeed(pp)
instead of picking a random seed. But since the cost of running SampleSeed is sublinear
in p, this has no effect on the computational complexity of the protocol.

We mention two additional minor technicalities:

• The construction of [IKOS08] is described using a quadratic-stretch local PRG,
which is without loss of generality since a local PRG with arbitrary polynomial
stretch can be extended to quadratic stretch via self-composition. However, our
structured-seed local PRG achieves only near quadratic stretch, and structured-
seed local PRGs cannot be self-composed. Nevertheless, the assumption of (strict)
quadratic stretch in [IKOS08] was made only for notational convenience, and
can be generalized in a straightforward way to work with a PRG with a smaller
(polynomial) stretch. The reduction then invokes O(p1/2+ε) string-OTs on strings
of total length O(p), where ε is such that the local PRG stretches O(p1/2+ε) bits
into p bits.

• After completing the reduction, it remains to implement the O(p1/2+ε) string-OTs on
strings of total length O(p) with constant computational overhead. This relies again
on a constant-overhead PRG: given any pair of strings (α0, α1) of length O(p1/2−ε),
the sender samples two ℓ-bit seeds (seed0, seed1) for a local PRG. The sender and
the receiver (with bit b) use an ℓ-bit string-OT to let the receiver learn seedb, using
poly(n) · ℓ computation. Then, the sender sends G(seed0)⊕ α0, G(seed1)⊕ α1, and
the receiver unmasks αb. The total computation per OT scales as poly(n) · ℓ +
O(|α0|+|α1|), hence an overall cost of poly(n) · ℓ · p1/2+ε + O(p). Now, using a
structured-seed local PRG with any polynomial stretch yields ℓ = O(p(1/2−ε)·γ) for
some γ < 1, hence poly(n) · ℓ · p1/2+ε = o(p) for a large enough p. Here again, an
arbitrary structured-seed local PRG with polynomial stretch suffices.

9.7.3. Sublinear secure computation and compact HSS

Homomorphic secret sharing (HSS) was introduced in the work of [BGI16a] as an
alternative to fully homomorphic encryption to achieve secure computation with sublinear
communication. At a high level, an N -party HSS for a class of functions F allows to

187

9. Structured-Seed Local Pseudorandom Generators and their Applications

share an input x such that for every function f ∈ F , each party with input share xi can
locally compute yi such that (y1, · · · , yN) form additive shares of y = f(x). A compact
HSS is an HSS where the share size and sharing algorithm runtime are O(|x|) + poly(n).
Combined with a generic MPC protocol with linear communication overhead to securely
run the sharing algorithm, a compact HSS scheme immediately gives rise to a secure
N -party protocol with essentially optimal communication O(N · (|x|+|y|)) + poly(n) for
every function f ∈ F .

A standard approach to build compact HSS from HSS is to use a “hybrid encapsulation”
trick: to share a long input x, share a short seed seed with HSS among the parties, and
reveal u = x⊕G(seed) to everyone, where G is a PRG. If the PRG runs in linear time, the
share size and runtime of sharing are clearly O(|x|)+poly(n). Then, to get shares of f(x),
the parties homomorphically evaluate gu(seed) := f(u⊕G(seed)) = f(x). This approach
works as long as gu ∈ F . In particular, this means that if the HSS scheme supports a
very low function class F , the PRG G needs to belong to a very low complexity class.

The recent work of [BCM23] showed how to achieve sublinear secure computation
and compact HSS from assumptions that were not previously known to imply it. In
particular, they show:

Theorem 9.28 (Theorem 32 in [BCM23]). Assuming the superpolynomial hardness of
DCR and the existence of PRGs with constant locality, there exists a four-party HSS
scheme for the class of loglog-depth circuits with n inputs; the HSS scheme has share
size n · (1 + o(1)). Furthermore, there exists a protocol with communication complexity
n · (4 + o(1)) (for large enough n) for securely realizing the four-party functionality that
generates HSS shares of the concatenation of the parties’ inputs.

It is immediate from the description of the construction that Theorem 32 in [BCM23]
extends directly to the setting where a structured-seed constant-locality PRG (with
arbitrarily small polynomial stretch) is used instead: in their construction, each party
locally samples a short seed seedi and a generic secure computation protocol is ran on their
concatenation (seed1||seed2||seed3||seed4). The only impact of using a structured-seed
local PRG is that the parties will locally run SampleSeed instead of sampling their seed
uniformly, which has no influence on the correctness, security, of communication efficiency
of the protocol. As a consequence, we immediately obtain the following corollary:

Corollary 9.29. Assuming the superpolynomial hardness of DCR and the hardness of
the regular sparse-LPN assumption (or, alternatively, of the H-conditioned sparse-LPN
assumption), there exists a four-party HSS scheme for the class of loglog-depth circuits
with n inputs; the HSS scheme has share size n · (1 + o(1)). Furthermore, there exists a
protocol with communication complexity n · (4 + o(1)) (for large enough n) for securely
realizing the four-party functionality that generates HSS shares of the concatenation of
the parties’ inputs.

Combining this corollary with the compiler of [BCM23] from N -party compact HSS to
(N + 1)-party secure computation with sublinear communication yields a 5-party protocol

188

9.7. Applications

with sublinear communication O(s/log log s) for all layered circuits of size s under the
same assumptions as above.2

9.7.4. Hardness of learning

PAC learning [Val84] is the algorithmic problem of finding a hypothesis that predicts the
output of an unknown class of functions with high probability. The hardness of learning
focuses on showing a learning algorithm’s ability to return a hypothesis. Daniely and Vardi
in [DV21] recently proved several hardness of learning results based on the assumption
that local PRGs with polynomial stretch and constant distinguishing advantage exist.
We show that our structured seed local PRG can be used in place of their PRG, obtaining
hardness-of-learning results from the sparse-LPN assumption.

Definition 9.13 (Predicate). Given a structured-seed ℓ-local PRG (Setup,SampleSeed,PRG)
with input size k, and stretch n, we let P denote the predicate such that for all i ∈ [n],
there exists a subset Si ⊂ [k] of size |Si|≤ ℓ such that for all x ∈ Supp(SampleSeed(pp)),
defining y = PRG(x), we have yi = P (x[Si]).

Remark 8. In general, an ℓ-local PRG only guarantees that for each output bit yi, there
is a predicate Pi and a size-ℓ subset Si of the bits of the seed x such that yi = Pi(x[Si]).
However, assuming a single predicate P is without of generality when the PRG has
polynomial stretch: since there are at most 22ℓ possible predicates Pi on ℓ-bit inputs,
and ℓ is a constant, setting P to be the most frequent Pi and keeping only the output
bits computed using P yields an ℓ-local PRG with polynomial stretch (reduced by a
constant factor at most 22ℓ) and a single global predicate P . Furthermore, we note that
our constructions from sparse-LPN directly have a single global predicate.

9.7.4.1. DNFs.

We prove that formulas in disjunctive normal form with ω(1) terms cannot be efficiently
PAC-learned assuming the sparse-LPN assumption:

Theorem 9.30 (Theorem 3.1 in [DV21]). Under the assumptions of Theorem 9.5.11,
for every q(n) = ω(1) there is no efficient algorithm that PAC-learns DNF formulas with
n variables and q(n) terms.

We note that, contrary with the other applications discussed in this section, we only
need to assume a structured-seed local PRG with constant (ε, δ). Therefore, we can rely
directly on sparse-LPN rather than regular sparse-LPN via our reduction from Lemma 9.16.
However, the result also crucially requires a local PRG with arbitrary polynomial stretch.
Fortunately, one can achieve an arbitrary polynomial stretch under sparse-LPN via the
construction of Section 9.5.11.

2The compiler of [BCM23] requires assuming the hardness of DCR and LPN as it relies on the
(DCR+LPN)-based construction of correlated symmetric PIR from [BCM22]. However, their construc-
tion can be instantiated with any suitable variant of LPN, including sparse-LPN, hence it requires
only assumptions that are redundant with the one we already assume.

189

9. Structured-Seed Local Pseudorandom Generators and their Applications

At the heart of the proof of Theorem 3.1 in [DV21] is the following clever idea: let ℓ
be a constant, and let P : {0, 1}ℓ → {0, 1} be an ℓ-local predicate. Given a size-ℓ subset
S = {s1, · · · , sℓ} ⊂ [n], write vi := unitn(si) ∈ {0, 1}n for i = 1 to ℓ. Then, consider the
following formula ψ:

ψ(v1, · · · ,vℓ) =
∨

x:P (x)=1

∧
i≤ℓ

∧
j:seedj ̸=xi

v̄i,j .

We have

ψ(v1, · · · ,vℓ) = 1 ⇐⇒ ∃x ∈ P−1(1),∀i ≤ ℓ,∀seedj ̸= xi, v̄i,j = 1
⇐⇒ ∃x ∈ P−1(1),∀i ≤ ℓ,∀seedj ̸= xi, unitn(si)j = 0
⇐⇒ ∃x ∈ P−1(1), ∀i ≤ ℓ,∀seedj ̸= xi, si ̸= j

⇐⇒ ∃x ∈ P−1(1), ∀i ≤ ℓ, seedsi = xi

⇐⇒ ∃x ∈ P−1(1), seedS = x
⇐⇒ P (seedS) = 1.

This means that given a predicate P and a seed x, it is possible to hardcode (P,x) in a
DNF ϕ such that for every size-ℓ subset S, there is an encoding Encode(S) = (v1, · · · ,vℓ)
such that ψ(Encode(S)) = P (x[S]).

Now, we explain how to adapt the proof of Theorem 3.1 in [DV21] to structured-seed
local PRGs. We need the following assumption:
Assumption 2. For every constant s > 1, there exists a constant ℓ such that there exists a
(T, 1/6, 1/6)-secure structured-seed ℓ-local PRG (Setup, SampleSeed,PRG) with predicate
P , mapping k bits to ks bits, for every T = poly(n).

By Theorem 9.5.11, the assumption above is implied by the sparse-LPN assumption.
Then, let A be a PPT adversary that PAC-learns DNF formulas with k variables and
q = ω(1) terms. Let Q denote the number of queries to the DNF oracle made by A, and
set s such that ks > 100Q2. Define the following distribution D:

• Sample pp← Setup(1n).

• For any index i ≤ ks, let Si denote the size-ℓ subset of the bits of seed used by
PRGpp(seed) (note that Si is independent of the particular choice of seed, but might
depend on pp).

• Define D = Dpp to be the distribution that samples i $← [ks] and outputs z =
Encode(Si).

Now, sample seed← SampleSeed(pp), and let ψ be the DNF (with seed, P hardcoded)
encoding the computation of the mapping PRGpp(seed)i = P (seedSi) = ψ(Encode(Si)).
Note that ψ is a DNF formula with at most 2ℓ terms. Given Q samples (zi, ψ(zi))i≤Q (the
training set), the adversary A returns a hypothesis h with, with small probability, has a
small error on the training set. Note that except with probability at most 1/100, there
are no collisions among the queries. Now, given h, it is straightforward to distinguish the
next sample (zQ+1, ψ(zQ+1)) from random with high probability.

190

9.7. Applications

9.7.4.2. Other classes.

Because any function represented by a DNF formula with q(n) terms can also be repre-
sented by a polynomial threshold function over {0, 1}n with q(n) monomials, assuming
sparse-LPN, the following corollary follows from Theorem 9.30.

Corollary 9.31 (Corollary 3.2 in [DV21]). For all q(n) = ω(1) there is no efficient
algorithm that learns q(n)-sparse polynomial threshold functions over {0, 1}n.

One can also consider ω(1)-sparse GF (2) polynomials over {0, 1}n which are simply a
sum of ω(1) monomials modulo 2.

Theorem 9.32. For all q(n) = ω(1) there is no efficient algorithm that learns q(n)-sparse
GF(2) polynomials over {0, 1}n.

191

Bibliography
[ABGKR14] Adi Akavia, Andrej Bogdanov, Siyao Guo, Akshay Kamath, and Alon Rosen.

Candidate weak pseudorandom functions in AC0 o MOD2. In: ITCS 2014: 5th
Conference on Innovations in Theoretical Computer Science. Jan. 2014. doi:
10.1145/2554797.2554821.

[ABR16] Benny Applebaum, Andrej Bogdanov, and Alon Rosen. A Dichotomy for Local
Small-Bias Generators. In: Journal of Cryptology 3 (July 2016). doi: 10.1007/
s00145-015-9202-8.

[ADEL22] Thomas Attema, Vincent Dunning, Maarten H. Everts, and Peter Langenkamp.
Efficient Compiler to Covert Security with Public Verifiability for Honest Major-
ity MPC. In: ACNS 22: 20th International Conference on Applied Cryptography
and Network Security. June 2022. doi: 10.1007/978-3-031-09234-3_33.

[ADINZ17] Benny Applebaum, Ivan Damgård, Yuval Ishai, Michael Nielsen, and Lior Zichron.
Secure Arithmetic Computation with Constant Computational Overhead. In:
Advances in Cryptology – CRYPTO 2017, Part I. Aug. 2017. doi: 10.1007/978-
3-319-63688-7_8.

[ADOS22] Damiano Abram, Ivan Damgård, Claudio Orlandi, and Peter Scholl. An Algebraic
Framework for Silent Preprocessing with Trustless Setup and Active Security. In:
Advances in Cryptology – CRYPTO 2022, Part IV. Aug. 2022. doi: 10.1007/
978-3-031-15985-5_15.

[AIK04] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography in NC0. In:
45th Annual Symposium on Foundations of Computer Science. Oct. 2004. doi:
10.1109/FOCS.2004.20.

[AIK08] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. On pseudorandom gener-
ators with linear stretch in NC 0. In: Computational Complexity 1 (2008).

[AJLTVW12] Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod Vaikun-
tanathan, and Daniel Wichs. Multiparty Computation with Low Communication,
Computation and Interaction via Threshold FHE. In: Advances in Cryptology –
EUROCRYPT 2012. Apr. 2012. doi: 10.1007/978-3-642-29011-4_29.

[AK19] Benny Applebaum and Eliran Kachlon. Sampling Graphs without Forbidden
Subgraphs and Unbalanced Expanders with Negligible Error. In: 60th Annual
Symposium on Foundations of Computer Science. Nov. 2019. doi: 10.1109/
FOCS.2019.00020.

[AL07] Yonatan Aumann and Yehuda Lindell. Security Against Covert Adversaries:
Efficient Protocols for Realistic Adversaries. In: TCC 2007: 4th Theory of
Cryptography Conference. Feb. 2007. doi: 10.1007/978-3-540-70936-7_8.

[AL16] Benny Applebaum and Shachar Lovett. Algebraic attacks against random local
functions and their countermeasures. In: 48th Annual ACM Symposium on
Theory of Computing. June 2016. doi: 10.1145/2897518.2897554.

193

https://doi.org/10.1145/2554797.2554821
https://doi.org/10.1007/s00145-015-9202-8
https://doi.org/10.1007/s00145-015-9202-8
https://doi.org/10.1007/978-3-031-09234-3_33
https://doi.org/10.1007/978-3-319-63688-7_8
https://doi.org/10.1007/978-3-319-63688-7_8
https://doi.org/10.1007/978-3-031-15985-5_15
https://doi.org/10.1007/978-3-031-15985-5_15
https://doi.org/10.1109/FOCS.2004.20
https://doi.org/10.1007/978-3-642-29011-4_29
https://doi.org/10.1109/FOCS.2019.00020
https://doi.org/10.1109/FOCS.2019.00020
https://doi.org/10.1007/978-3-540-70936-7_8
https://doi.org/10.1145/2897518.2897554

Bibliography

[Ale03] Michael Alekhnovich. More on Average Case vs Approximation Complexity. In:
44th Annual Symposium on Foundations of Computer Science. Oct. 2003. doi:
10.1109/SFCS.2003.1238204.

[AOP20] Bar Alon, Eran Omri, and Anat Paskin-Cherniavsky. MPC with Friends and
Foes. In: Advances in Cryptology – CRYPTO 2020, Part II. Aug. 2020. doi:
10.1007/978-3-030-56880-1_24.

[App12] Benny Applebaum. Pseudorandom generators with long stretch and low locality
from random local one-way functions. In: 44th Annual ACM Symposium on
Theory of Computing. May 2012. doi: 10.1145/2213977.2214050.

[App15] Benny Applebaum. The Cryptographic Hardness of Random Local Functions
– Survey. Cryptology ePrint Archive, Report 2015/165. 2015. url: https://
eprint.iacr.org/2015/165.

[APY20] Ittai Abraham, Benny Pinkas, and Avishay Yanai. Blinder - Scalable, Robust
Anonymous Committed Broadcast. In: ACM CCS 2020: 27th Conference on
Computer and Communications Security. Nov. 2020. doi: 10.1145/3372297.
3417261.

[ASY22] Damiano Abram, Peter Scholl, and Sophia Yakoubov. Distributed (Correlation)
Samplers: How to Remove a Trusted Dealer in One Round. In: Advances in
Cryptology – EUROCRYPT 2022, Part I. May 2022. doi: 10.1007/978-3-031-
06944-4_27.

[BBCCDS24a] Maxime Bombar, Dung Bui, Geoffroy Couteau, Alain Couvreur, Clément Ducros,
and Sacha Servan-Schreiber. FOLEAGE: F4OLE-Based Multi-Party Compu-
tation for Boolean Circuits. In: Advances in Cryptology - ASIACRYPT 2024
- 30th International Conference on the Theory and Application of Cryptol-
ogy and Information Security, Kolkata, India, December 9-13, 2024. https:
//eprint.iacr.org/2024/429. 2024.

[BBCCDS24b] Maxime Bombar, Dung Bui, Geoffroy Couteau, Alain Couvreur, Clément Ducros,
and Sacha Servan-Schreiber. FOLEAGE: F4 OLE-Based Multi-Party Computa-
tion for Boolean Circuits. In: Cryptology ePrint Archive (2024).

[BBHP22] Michael Backes, Pascal Berrang, Lucjan Hanzlik, and Ivan Pryvalov. A framework
for constructing Single Secret Leader Election from MPC. Cryptology ePrint
Archive, Report 2022/1040. 2022. url: https://eprint.iacr.org/2022/1040.

[BCCD23] Maxime Bombar, Geoffroy Couteau, Alain Couvreur, and Clément Ducros.
Correlated Pseudorandomness from the Hardness of Quasi-Abelian Decoding. In:
Advances in Cryptology – CRYPTO 2023, Part IV. Aug. 2023. doi: 10.1007/
978-3-031-38551-3_18.

[BCGI18] Elette Boyle, Geoffroy Couteau, Niv Gilboa, and Yuval Ishai. Compressing Vector
OLE. In: ACM CCS 2018: 25th Conference on Computer and Communications
Security. Oct. 2018. doi: 10.1145/3243734.3243868.

[BCGIKRS19] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Peter Rindal,
and Peter Scholl. Efficient Two-Round OT Extension and Silent Non-Interactive
Secure Computation. In: ACM CCS 2019: 26th Conference on Computer and
Communications Security. Nov. 2019. doi: 10.1145/3319535.3354255.

194

https://doi.org/10.1109/SFCS.2003.1238204
https://doi.org/10.1007/978-3-030-56880-1_24
https://doi.org/10.1145/2213977.2214050
https://eprint.iacr.org/2015/165
https://eprint.iacr.org/2015/165
https://doi.org/10.1145/3372297.3417261
https://doi.org/10.1145/3372297.3417261
https://doi.org/10.1007/978-3-031-06944-4_27
https://doi.org/10.1007/978-3-031-06944-4_27
https://eprint.iacr.org/2024/429
https://eprint.iacr.org/2024/429
https://eprint.iacr.org/2022/1040
https://doi.org/10.1007/978-3-031-38551-3_18
https://doi.org/10.1007/978-3-031-38551-3_18
https://doi.org/10.1145/3243734.3243868
https://doi.org/10.1145/3319535.3354255

Bibliography

[BCGIKRS22] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Nicolas
Resch, and Peter Scholl. Correlated Pseudorandomness from Expand-Accumulate
Codes. In: Advances in Cryptology – CRYPTO 2022, Part II. Aug. 2022. doi:
10.1007/978-3-031-15979-4_21.

[BCGIKRS23] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Nicolas
Resch, and Peter Scholl. Oblivious Transfer with Constant Computational Over-
head. In: Advances in Cryptology – EUROCRYPT 2023, Part I. Apr. 2023. doi:
10.1007/978-3-031-30545-0_10.

[BCGIKS19] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Peter
Scholl. Efficient Pseudorandom Correlation Generators: Silent OT Extension
and More. In: Advances in Cryptology – CRYPTO 2019, Part III. Aug. 2019.
doi: 10.1007/978-3-030-26954-8_16.

[BCGIKS20a] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Peter
Scholl. Correlated Pseudorandom Functions from Variable-Density LPN. In:
61st Annual Symposium on Foundations of Computer Science. Nov. 2020. doi:
10.1109/FOCS46700.2020.00103.

[BCGIKS20b] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Peter
Scholl. Efficient Pseudorandom Correlation Generators from Ring-LPN. In:
Advances in Cryptology – CRYPTO 2020, Part II. Aug. 2020. doi: 10.1007/978-
3-030-56880-1_14.

[BCGIO17] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, and Michele Orrù.
Homomorphic Secret Sharing: Optimizations and Applications. In: ACM CCS
2017: 24th Conference on Computer and Communications Security. Oct. 2017.
doi: 10.1145/3133956.3134107.

[BCM22] Elette Boyle, Geoffroy Couteau, and Pierre Meyer. Sublinear Secure Computation
from New Assumptions. In: TCC 2022: 20th Theory of Cryptography Conference,
Part II. Nov. 2022. doi: 10.1007/978-3-031-22365-5_5.

[BCM23] Elette Boyle, Geoffroy Couteau, and Pierre Meyer. Sublinear-Communication Se-
cure Multiparty Computation Does Not Require FHE. In: Advances in Cryptology
– EUROCRYPT 2023, Part II. Apr. 2023. doi: 10.1007/978-3-031-30617-4_6.

[BCM24] Dung Bui, Geoffroy Couteau, and Nikolas Melissaris. Structured-Seed Local
Pseudorandom Generators and their Applications. Cryptology ePrint Archive,
Report 2024/1027. 2024. url: https://eprint.iacr.org/2024/1027.

[BCMPR24] Dung Bui, Geoffroy Couteau, Pierre Meyer, Alain Passelègue, and Mahshid
Riahinia. Fast Public-Key Silent OT and More from Constrained Naor-Reingold.
In: Advances in Cryptology – EUROCRYPT 2024, Part VI. May 2024. doi:
10.1007/978-3-031-58751-1_4.

[BDD20] Carsten Baum, Bernardo David, and Rafael Dowsley. A Framework for Univer-
sally Composable Publicly Verifiable Cryptographic Protocols. Cryptology ePrint
Archive, Report 2020/207. 2020. url: https://eprint.iacr.org/2020/207.

[BDOZ11] Rikke Bendlin, Ivan Damgård, Claudio Orlandi, and Sarah Zakarias. Semi-
homomorphic Encryption and Multiparty Computation. In: Advances in Cryptol-
ogy – EUROCRYPT 2011. May 2011. doi: 10.1007/978-3-642-20465-4_11.

[BDSW23] Carsten Baum, Samuel Dittmer, Peter Scholl, and Xiao Wang. Sok: vector
OLE-based zero-knowledge protocols. In: Designs, Codes and Cryptography 11
(2023). doi: 10.1007/s10623-023-01292-8.

195

https://doi.org/10.1007/978-3-031-15979-4_21
https://doi.org/10.1007/978-3-031-30545-0_10
https://doi.org/10.1007/978-3-030-26954-8_16
https://doi.org/10.1109/FOCS46700.2020.00103
https://doi.org/10.1007/978-3-030-56880-1_14
https://doi.org/10.1007/978-3-030-56880-1_14
https://doi.org/10.1145/3133956.3134107
https://doi.org/10.1007/978-3-031-22365-5_5
https://doi.org/10.1007/978-3-031-30617-4_6
https://eprint.iacr.org/2024/1027
https://doi.org/10.1007/978-3-031-58751-1_4
https://eprint.iacr.org/2020/207
https://doi.org/10.1007/978-3-642-20465-4_11
https://doi.org/10.1007/s10623-023-01292-8

Bibliography

[Bea92] Donald Beaver. Efficient Multiparty Protocols Using Circuit Randomization. In:
Advances in Cryptology – CRYPTO’91. Aug. 1992. doi: 10.1007/3-540-46766-
1_34.

[Bea96] Donald Beaver. Correlated Pseudorandomness and the Complexity of Private
Computations. In: 28th Annual ACM Symposium on Theory of Computing. May
1996. doi: 10.1145/237814.237996.

[BEHG20] Dan Boneh, Saba Eskandarian, Lucjan Hanzlik, and Nicola Greco. Single secret
leader election. In: Proceedings of the 2nd ACM Conference on Advances in
Financial Technologies. 2020.

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Non-Interactive Zero-Knowledge
and Its Applications (Extended Abstract). In: 20th Annual ACM Symposium on
Theory of Computing. May 1988. doi: 10.1145/62212.62222.

[BGGJKRS18] Dan Boneh, Rosario Gennaro, Steven Goldfeder, Aayush Jain, Sam Kim, Peter
M. R. Rasmussen, and Amit Sahai. Threshold Cryptosystems from Threshold
Fully Homomorphic Encryption. In: Advances in Cryptology – CRYPTO 2018,
Part I. Aug. 2018. doi: 10.1007/978-3-319-96884-1_19.

[BGI14] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional Signatures and
Pseudorandom Functions. In: PKC 2014: 17th International Conference on
Theory and Practice of Public Key Cryptography. Mar. 2014. doi: 10.1007/978-
3-642-54631-0_29.

[BGI15] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function Secret Sharing. In: Advances
in Cryptology – EUROCRYPT 2015, Part II. Apr. 2015. doi: 10.1007/978-3-
662-46803-6_12.

[BGI16a] Elette Boyle, Niv Gilboa, and Yuval Ishai. Breaking the Circuit Size Barrier for
Secure Computation Under DDH. In: Advances in Cryptology – CRYPTO 2016,
Part I. Aug. 2016. doi: 10.1007/978-3-662-53018-4_19.

[BGI16b] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function Secret Sharing: Improve-
ments and Extensions. In: ACM CCS 2016: 23rd Conference on Computer and
Communications Security. Oct. 2016. doi: 10.1145/2976749.2978429.

[BGIK22] Elette Boyle, Niv Gilboa, Yuval Ishai, and Victor I. Kolobov. Programmable
Distributed Point Functions. In: Advances in Cryptology – CRYPTO 2022,
Part IV. Aug. 2022. doi: 10.1007/978-3-031-15985-5_5.

[BGIRSVY01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai,
Salil P. Vadhan, and Ke Yang. On the (Im)possibility of Obfuscating Programs.
In: Advances in Cryptology – CRYPTO 2001. Aug. 2001. doi: 10.1007/3-540-
44647-8_1.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness Theorems
for Non-Cryptographic Fault-Tolerant Distributed Computation (Extended Ab-
stract). In: 20th Annual ACM Symposium on Theory of Computing. May 1988.
doi: 10.1145/62212.62213.

[BKR23] Andrej Bogdanov, Pravesh K. Kothari, and Alon Rosen. Public-Key Encryption,
Local Pseudorandom Generators, and the Low-Degree Method. In: TCC 2023:
21st Theory of Cryptography Conference, Part I. Nov. 2023. doi: 10.1007/978-
3-031-48615-9_10.

196

https://doi.org/10.1007/3-540-46766-1_34
https://doi.org/10.1007/3-540-46766-1_34
https://doi.org/10.1145/237814.237996
https://doi.org/10.1145/62212.62222
https://doi.org/10.1007/978-3-319-96884-1_19
https://doi.org/10.1007/978-3-642-54631-0_29
https://doi.org/10.1007/978-3-642-54631-0_29
https://doi.org/10.1007/978-3-662-46803-6_12
https://doi.org/10.1007/978-3-662-46803-6_12
https://doi.org/10.1007/978-3-662-53018-4_19
https://doi.org/10.1145/2976749.2978429
https://doi.org/10.1007/978-3-031-15985-5_5
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1145/62212.62213
https://doi.org/10.1007/978-3-031-48615-9_10
https://doi.org/10.1007/978-3-031-48615-9_10

Bibliography

[BKS19] Elette Boyle, Lisa Kohl, and Peter Scholl. Homomorphic Secret Sharing from
Lattices Without FHE. In: Advances in Cryptology – EUROCRYPT 2019, Part II.
May 2019. doi: 10.1007/978-3-030-17656-3_1.

[BKW00] Avrim Blum, Adam Kalai, and Hal Wasserman. Noise-tolerant learning, the
parity problem, and the statistical query model. In: 32nd Annual ACM Symposium
on Theory of Computing. May 2000. doi: 10.1145/335305.335355.

[BM97] Mihir Bellare and Daniele Micciancio. A New Paradigm for Collision-Free
Hashing: Incrementality at Reduced Cost. In: Advances in Cryptology – EURO-
CRYPT’97. May 1997. doi: 10.1007/3-540-69053-0_13.

[BMMM20] Nicholas-Philip Brandt, Sven Maier, Tobias Müller, and Jörn Müller-Quade.
Constructing Secure Multi-Party Computation with Identifiable Abort. Cryptology
ePrint Archive, Report 2020/153. 2020. url: https://eprint.iacr.org/2020/
153.

[BMR90] Donald Beaver, Silvio Micali, and Phillip Rogaway. The Round Complexity of
Secure Protocols (Extended Abstract). In: 22nd Annual ACM Symposium on
Theory of Computing. May 1990. doi: 10.1145/100216.100287.

[BMRS23] Carsten Baum, Nikolas Melissaris, Rahul Rachuri, and Peter Scholl. Cheater
Identification on a Budget: MPC with Identifiable Abort from Pairwise MACs.
Cryptology ePrint Archive, Report 2023/1548. 2023. url: https://eprint.
iacr.org/2023/1548.

[BMRS24] Carsten Baum, Nikolas Melissaris, Rahul Rachuri, and Peter Scholl. Cheater
Identification on a Budget: MPC with Identifiable Abort from Pairwise MACs.
In: Advances in Cryptology – CRYPTO 2024, Part VIII. Aug. 2024. doi: 10.
1007/978-3-031-68397-8_14.

[Bog+08] Peter Bogetoft, Dan Lund Christensen, Ivan Damgard, Martin Geisler, Thomas
Jakobsen, Mikkel Krøigaard, Janus Dam Nielsen, Jesper Buus Nielsen, Kurt
Nielsen, Jakob Pagter, Michael Schwartzbach, and Tomas Toft. Multiparty
Computation Goes Live. Cryptology ePrint Archive, Report 2008/068. 2008.
url: https://eprint.iacr.org/2008/068.

[BOS16] Carsten Baum, Emmanuela Orsini, and Peter Scholl. Efficient Secure Multiparty
Computation with Identifiable Abort. In: TCC 2016-B: 14th Theory of Cryptog-
raphy Conference, Part I. Oct. 2016. doi: 10.1007/978-3-662-53641-4_18.

[BOSS20] Carsten Baum, Emmanuela Orsini, Peter Scholl, and Eduardo Soria-Vazquez.
Efficient Constant-Round MPC with Identifiable Abort and Public Verifiability. In:
Advances in Cryptology – CRYPTO 2020, Part II. Aug. 2020. doi: 10.1007/978-
3-030-56880-1_20.

[BQ09] Andrej Bogdanov and Youming Qiao. On the security of goldreich’s one-way
function. In: Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques. 2009.

[BR17] Andrej Bogdanov and Alon Rosen. Pseudorandom Functions: Three Decades
Later. Cryptology ePrint Archive, Report 2017/652. 2017. url: https://eprint.
iacr.org/2017/652.

[BW13] Dan Boneh and Brent Waters. Constrained Pseudorandom Functions and Their
Applications. In: Advances in Cryptology – ASIACRYPT 2013, Part II. Dec.
2013. doi: 10.1007/978-3-642-42045-0_15.

197

https://doi.org/10.1007/978-3-030-17656-3_1
https://doi.org/10.1145/335305.335355
https://doi.org/10.1007/3-540-69053-0_13
https://eprint.iacr.org/2020/153
https://eprint.iacr.org/2020/153
https://doi.org/10.1145/100216.100287
https://eprint.iacr.org/2023/1548
https://eprint.iacr.org/2023/1548
https://doi.org/10.1007/978-3-031-68397-8_14
https://doi.org/10.1007/978-3-031-68397-8_14
https://eprint.iacr.org/2008/068
https://doi.org/10.1007/978-3-662-53641-4_18
https://doi.org/10.1007/978-3-030-56880-1_20
https://doi.org/10.1007/978-3-030-56880-1_20
https://eprint.iacr.org/2017/652
https://eprint.iacr.org/2017/652
https://doi.org/10.1007/978-3-642-42045-0_15

Bibliography

[Can01] Ran Canetti. Universally Composable Security: A New Paradigm for Crypto-
graphic Protocols. In: 42nd Annual Symposium on Foundations of Computer
Science. Oct. 2001. doi: 10.1109/SFCS.2001.959888.

[Can97] Ran Canetti. Towards Realizing Random Oracles: Hash Functions That Hide
All Partial Information. In: Advances in Cryptology – CRYPTO’97. Aug. 1997.
doi: 10.1007/BFb0052255.

[CBM15] Henry Corrigan-Gibbs, Dan Boneh, and David Mazières. Riposte: An Anonymous
Messaging System Handling Millions of Users. In: 2015 IEEE Symposium on
Security and Privacy. May 2015. doi: 10.1109/SP.2015.27.

[CCMBM24] Miranda Christ, Kevin Choi, Walter McKelvie, Joseph Bonneau, and Tal Malkin.
Accountable Secret Leader Election. In: 6th Conference on Advances in Financial
Technologies (AFT 2024). 2024.

[CDKs23] Ran Cohen, Jack Doerner, Yashvanth Kondi, and abhi shelat. Secure Multiparty
Computation with Identifiable Abort from Vindicating Release. Cryptology ePrint
Archive, Report 2023/1136. 2023. url: https://eprint.iacr.org/2023/1136.

[CDKs24] Ran Cohen, Jack Doerner, Yashvanth Kondi, and abhi shelat. Secure Multiparty
Computation with Identifiable Abort via Vindicating Release. In: Advances in
Cryptology – CRYPTO 2024, Part VIII. Aug. 2024. doi: 10.1007/978-3-031-
68397-8_2.

[CDMRR18] Geoffroy Couteau, Aurélien Dupin, Pierrick Méaux, Mélissa Rossi, and Yann
Rotella. On the Concrete Security of Goldreich’s Pseudorandom Generator.
In: Advances in Cryptology – ASIACRYPT 2018, Part II. Dec. 2018. doi:
10.1007/978-3-030-03329-3_4.

[CEMT14] James Cook, Omid Etesami, Rachel Miller, and Luca Trevisan. On the one-way
function candidate proposed by Goldreich. In: ACM Transactions on Computation
Theory (TOCT) 3 (2014).

[CFG22] Dario Catalano, Dario Fiore, and Emanuele Giunta. Adaptively Secure Single Se-
cret Leader Election from DDH. In: 41st ACM Symposium Annual on Principles
of Distributed Computing. July 2022. doi: 10.1145/3519270.3538424.

[CFG23] Dario Catalano, Dario Fiore, and Emanuele Giunta. Efficient and Universally
Composable Single Secret Leader Election from Pairings. In: PKC 2023: 26th
International Conference on Theory and Practice of Public Key Cryptography,
Part I. May 2023. doi: 10.1007/978-3-031-31368-4_17.

[CFY17] Robert K. Cunningham, Benjamin Fuller, and Sophia Yakoubov. Catching
MPC Cheaters: Identification and Openability. In: ICITS 17: 10th International
Conference on Information Theoretic Security. Nov. 2017. doi: 10.1007/978-
3-319-72089-0_7.

[CGZ20] Ran Cohen, Juan A. Garay, and Vassilis Zikas. Broadcast-Optimal Two-Round
MPC. In: Advances in Cryptology – EUROCRYPT 2020, Part II. May 2020.
doi: 10.1007/978-3-030-45724-2_28.

[Cha88] David Chaum. The Dining Cryptographers Problem: Unconditional Sender
and Recipient Untraceability. In: Journal of Cryptology 1 (Jan. 1988). doi:
10.1007/BF00206326.

198

https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1007/BFb0052255
https://doi.org/10.1109/SP.2015.27
https://eprint.iacr.org/2023/1136
https://doi.org/10.1007/978-3-031-68397-8_2
https://doi.org/10.1007/978-3-031-68397-8_2
https://doi.org/10.1007/978-3-030-03329-3_4
https://doi.org/10.1145/3519270.3538424
https://doi.org/10.1007/978-3-031-31368-4_17
https://doi.org/10.1007/978-3-319-72089-0_7
https://doi.org/10.1007/978-3-319-72089-0_7
https://doi.org/10.1007/978-3-030-45724-2_28
https://doi.org/10.1007/BF00206326

Bibliography

[Che+21] Megan Chen, Carmit Hazay, Yuval Ishai, Yuriy Kashnikov, Daniele Micciancio,
Tarik Riviere, abhi shelat, Muthu Venkitasubramaniam, and Ruihan Wang.
Diogenes: Lightweight Scalable RSA Modulus Generation with a Dishonest Ma-
jority. In: 2021 IEEE Symposium on Security and Privacy. May 2021. doi:
10.1109/SP40001.2021.00025.

[CKMSS24] Geoffroy Couteau, Alexander Koch, Nikolas Melissaris, Sacha Servan-Schreiber,
and Peter Scholl. Compressing Pseudorandom Permutation Correlations. In
Submission. 2024.

[Cle86] Richard Cleve. Limits on the Security of Coin Flips when Half the Processors
Are Faulty (Extended Abstract). In: 18th Annual ACM Symposium on Theory of
Computing. May 1986. doi: 10.1145/12130.12168.

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally
composable two-party and multi-party secure computation. In: 34th Annual ACM
Symposium on Theory of Computing. May 2002. doi: 10.1145/509907.509980.

[CM01] Mary Cryan and Peter Bro Miltersen. On pseudorandom generators in NC 0. In:
International Symposium on Mathematical Foundations of Computer Science.
2001.

[CMPR23] Geoffroy Couteau, Pierre Meyer, Alain Passelègue, and Mahshid Riahinia. Con-
strained Pseudorandom Functions from Homomorphic Secret Sharing. In: Ad-
vances in Cryptology – EUROCRYPT 2023, Part III. Apr. 2023. doi: 10.1007/
978-3-031-30620-4_7.

[CRR21] Geoffroy Couteau, Peter Rindal, and Srinivasan Raghuraman. Silver: Silent
VOLE and Oblivious Transfer from Hardness of Decoding Structured LDPC
Codes. In: Advances in Cryptology – CRYPTO 2021, Part III. Aug. 2021. doi:
10.1007/978-3-030-84252-9_17.

[CRS03] Artur Czumaj, Chris Riley, and Christian Scheideler. Perfectly balanced al-
location. In: International Workshop on Randomization and Approximation
Techniques in Computer Science. 2003.

[CRSW22] Michele Ciampi, Divya Ravi, Luisa Siniscalchi, and Hendrik Waldner. Round-
Optimal Multi-party Computation with Identifiable Abort. In: Advances in Cryp-
tology – EUROCRYPT 2022, Part I. May 2022. doi: 10.1007/978-3-031-
06944-4_12.

[CS10] Octavian Catrina and Amitabh Saxena. Secure Computation with Fixed-Point
Numbers. In: FC 2010: 14th International Conference on Financial Cryptography
and Data Security. Jan. 2010. doi: 10.1007/978-3-642-14577-3_6.

[DEK21] Anders P. K. Dalskov, Daniel Escudero, and Marcel Keller. Fantastic Four:
Honest-Majority Four-Party Secure Computation With Malicious Security. In:
USENIX Security 2021: 30th USENIX Security Symposium. Aug. 2021.

[DFKNT06] Ivan Damgård, Matthias Fitzi, Eike Kiltz, Jesper Buus Nielsen, and Tomas
Toft. Unconditionally Secure Constant-Rounds Multi-party Computation for
Equality, Comparison, Bits and Exponentiation. In: TCC 2006: 3rd Theory of
Cryptography Conference. Mar. 2006. doi: 10.1007/11681878_15.

[DHRW16] Yevgeniy Dodis, Shai Halevi, Ron D. Rothblum, and Daniel Wichs. Spooky
Encryption and Its Applications. In: Advances in Cryptology – CRYPTO 2016,
Part III. Aug. 2016. doi: 10.1007/978-3-662-53015-3_4.

199

https://doi.org/10.1109/SP40001.2021.00025
https://doi.org/10.1145/12130.12168
https://doi.org/10.1145/509907.509980
https://doi.org/10.1007/978-3-031-30620-4_7
https://doi.org/10.1007/978-3-031-30620-4_7
https://doi.org/10.1007/978-3-030-84252-9_17
https://doi.org/10.1007/978-3-031-06944-4_12
https://doi.org/10.1007/978-3-031-06944-4_12
https://doi.org/10.1007/978-3-642-14577-3_6
https://doi.org/10.1007/11681878_15
https://doi.org/10.1007/978-3-662-53015-3_4

Bibliography

[DIJL23a] Quang Dao, Yuval Ishai, Aayush Jain, and Huijia Lin. Multi-party Homomorphic
Secret Sharing and Sublinear MPC from Sparse LPN. In: Annual International
Cryptology Conference. 2023.

[DIJL23b] Quang Dao, Yuval Ishai, Aayush Jain, and Huijia Lin. Multi-party Homomorphic
Secret Sharing and Sublinear MPC from Sparse LPN. In: Advances in Cryptology
– CRYPTO 2023, Part II. Aug. 2023. doi: 10.1007/978-3-031-38545-2_11.

[DMR23] Aurélien Dupin, Pierrick Méaux, and Mélissa Rossi. On the algebraic immu-
nity—resiliency trade-off, implications for Goldreich’s pseudorandom generator.
In: Designs, Codes and Cryptography (2023).

[DMRSY21] Ivan Damgård, Bernardo Magri, Divya Ravi, Luisa Siniscalchi, and Sophia
Yakoubov. Broadcast-Optimal Two Round MPC with an Honest Majority. In:
Advances in Cryptology – CRYPTO 2021, Part II. Aug. 2021. doi: 10.1007/978-
3-030-84245-1_6.

[DN14] Ivan Damgård and Jesper Buus Nielsen. Adaptive versus Static Security in the
UC Model. In: ProvSec 2014: 8th International Conference on Provable Security.
Oct. 2014. doi: 10.1007/978-3-319-12475-9_2.

[DPSZ12] Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty
Computation from Somewhat Homomorphic Encryption. In: Advances in Cryp-
tology – CRYPTO 2012. Aug. 2012. doi: 10.1007/978-3-642-32009-5_38.

[DRSY23] Ivan Damgård, Divya Ravi, Luisa Siniscalchi, and Sophia Yakoubov. Minimizing
Setup in Broadcast-Optimal Two Round MPC. In: Advances in Cryptology –
EUROCRYPT 2023, Part II. Apr. 2023. doi: 10.1007/978-3-031-30617-4_5.

[Ds17] Jack Doerner and abhi shelat. Scaling ORAM for Secure Computation. In: ACM
CCS 2017: 24th Conference on Computer and Communications Security. Oct.
2017. doi: 10.1145/3133956.3133967.

[DV21] Amit Daniely and Gal Vardi. From Local Pseudorandom Generators to Hardness
of Learning. In: Proceedings of Thirty Fourth Conference on Learning Theory.
Aug. 2021. url: https://proceedings.mlr.press/v134/daniely21a.html.

[ECZB21] Saba Eskandarian, Henry Corrigan-Gibbs, Matei Zaharia, and Dan Boneh. Ex-
press: Lowering the Cost of Metadata-hiding Communication with Cryptographic
Privacy. In: USENIX Security 2021: 30th USENIX Security Symposium. Aug.
2021.

[EKM17] Andre Esser, Robert Kübler, and Alexander May. LPN Decoded. In: Advances
in Cryptology – CRYPTO 2017, Part II. Aug. 2017. doi: 10.1007/978-3-319-
63715-0_17.

[FGJS17] Nelly Fazio, Rosario Gennaro, Tahereh Jafarikhah, and William E Skeith. Ho-
momorphic secret sharing from paillier encryption. In: Provable Security: 11th
International Conference, ProvSec 2017, Xi’an, China, October 23-25, 2017,
Proceedings 11. 2017.

[FHKS21] Sebastian Faust, Carmit Hazay, David Kretzler, and Benjamin Schlosser. Generic
Compiler for Publicly Verifiable Covert Multi-Party Computation. In: Advances
in Cryptology – EUROCRYPT 2021, Part II. Oct. 2021. doi: 10.1007/978-3-
030-77886-6_27.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to Construct Random
Functions. In: Journal of the ACM 4 (Oct. 1986). doi: 10.1145/6490.6503.

200

https://doi.org/10.1007/978-3-031-38545-2_11
https://doi.org/10.1007/978-3-030-84245-1_6
https://doi.org/10.1007/978-3-030-84245-1_6
https://doi.org/10.1007/978-3-319-12475-9_2
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/978-3-031-30617-4_5
https://doi.org/10.1145/3133956.3133967
https://proceedings.mlr.press/v134/daniely21a.html
https://doi.org/10.1007/978-3-319-63715-0_17
https://doi.org/10.1007/978-3-319-63715-0_17
https://doi.org/10.1007/978-3-030-77886-6_27
https://doi.org/10.1007/978-3-030-77886-6_27
https://doi.org/10.1145/6490.6503

Bibliography

[GI14] Niv Gilboa and Yuval Ishai. Distributed Point Functions and Their Applications.
In: Advances in Cryptology – EUROCRYPT 2014. May 2014. doi: 10.1007/978-
3-642-55220-5_35.

[GIKR02] Rosario Gennaro, Yuval Ishai, Eyal Kushilevitz, and Tal Rabin. On 2-Round
Secure Multiparty Computation. In: Advances in Cryptology – CRYPTO 2002.
Aug. 2002. doi: 10.1007/3-540-45708-9_12.

[GJ04] Philippe Golle and Ari Juels. Dining Cryptographers Revisited. In: Advances in
Cryptology – EUROCRYPT 2004. May 2004. doi: 10.1007/978-3-540-24676-
3_27.

[GK05] Shafi Goldwasser and Yael Tauman Kalai. On the Impossibility of Obfuscation
with Auxiliary Input. In: 46th Annual Symposium on Foundations of Computer
Science. Oct. 2005. doi: 10.1109/SFCS.2005.60.

[GLS15] S. Dov Gordon, Feng-Hao Liu, and Elaine Shi. Constant-Round MPC with
Fairness and Guarantee of Output Delivery. In: Advances in Cryptology –
CRYPTO 2015, Part II. Aug. 2015. doi: 10.1007/978-3-662-48000-7_4.

[GMW87a] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to Play any Mental
Game or A Completeness Theorem for Protocols with Honest Majority. In: 19th
Annual ACM Symposium on Theory of Computing. May 1987. doi: 10.1145/
28395.28420.

[GMW87b] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to Prove all NP-
Statements in Zero-Knowledge, and a Methodology of Cryptographic Protocol
Design. In: Advances in Cryptology – CRYPTO’86. Aug. 1987. doi: 10.1007/3-
540-47721-7_11.

[Gol00] Oded Goldreich. Candidate One-Way Functions Based on Expander Graphs.
Cryptology ePrint Archive, Report 2000/063. 2000. url: https://eprint.
iacr.org/2000/063.

[Had00] Satoshi Hada. Zero-Knowledge and Code Obfuscation. In: Advances in Cryptology
– ASIACRYPT 2000. Dec. 2000. doi: 10.1007/3-540-44448-3_34.

[HKKPPP22] Aditya Hegde, Nishat Koti, Varsha Bhat Kukkala, Shravani Patil, Arpita Patra,
and Protik Paul. Attaining GOD Beyond Honest Majority with Friends and
Foes. In: Advances in Cryptology – ASIACRYPT 2022, Part I. Dec. 2022. doi:
10.1007/978-3-031-22963-3_19.

[HMS07] Dennis Hofheinz, John Malone-Lee, and Martijn Stam. Obfuscation for Crypto-
graphic Purposes. In: TCC 2007: 4th Theory of Cryptography Conference. Feb.
2007. doi: 10.1007/978-3-540-70936-7_12.

[HN06] Martin Hirt and Jesper Buus Nielsen. Robust Multiparty Computation with
Linear Communication Complexity. In: Advances in Cryptology – CRYPTO 2006.
Aug. 2006. doi: 10.1007/11818175_28.

[HRsV07] Susan Hohenberger, Guy N. Rothblum, abhi shelat, and Vinod Vaikuntanathan.
Securely Obfuscating Re-encryption. In: TCC 2007: 4th Theory of Cryptography
Conference. Feb. 2007. doi: 10.1007/978-3-540-70936-7_13.

[HVW22] Carmit Hazay, Muthuramakrishnan Venkitasubramaniam, and Mor Weiss. Pro-
tecting Distributed Primitives Against Leakage: Equivocal Secret Sharing and
More. In: 3rd Conference on Information-Theoretic Cryptography (ITC 2022).
2022.

201

https://doi.org/10.1007/978-3-642-55220-5_35
https://doi.org/10.1007/978-3-642-55220-5_35
https://doi.org/10.1007/3-540-45708-9_12
https://doi.org/10.1007/978-3-540-24676-3_27
https://doi.org/10.1007/978-3-540-24676-3_27
https://doi.org/10.1109/SFCS.2005.60
https://doi.org/10.1007/978-3-662-48000-7_4
https://doi.org/10.1145/28395.28420
https://doi.org/10.1145/28395.28420
https://doi.org/10.1007/3-540-47721-7_11
https://doi.org/10.1007/3-540-47721-7_11
https://eprint.iacr.org/2000/063
https://eprint.iacr.org/2000/063
https://doi.org/10.1007/3-540-44448-3_34
https://doi.org/10.1007/978-3-031-22963-3_19
https://doi.org/10.1007/978-3-540-70936-7_12
https://doi.org/10.1007/11818175_28
https://doi.org/10.1007/978-3-540-70936-7_13

Bibliography

[IKKP15] Yuval Ishai, Ranjit Kumaresan, Eyal Kushilevitz, and Anat Paskin-Cherniavsky.
Secure Computation with Minimal Interaction, Revisited. In: Advances in Cryp-
tology – CRYPTO 2015, Part II. Aug. 2015. doi: 10.1007/978-3-662-48000-
7_18.

[IKLP06] Yuval Ishai, Eyal Kushilevitz, Yehuda Lindell, and Erez Petrank. On Combining
Privacy with Guaranteed Output Delivery in Secure Multiparty Computation. In:
Advances in Cryptology – CRYPTO 2006. Aug. 2006. doi: 10.1007/11818175_
29.

[IKNP03] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending Oblivious
Transfers Efficiently. In: Advances in Cryptology – CRYPTO 2003. Aug. 2003.
doi: 10.1007/978-3-540-45146-4_9.

[IKNZ23] Yuval Ishai, Mahimna Kelkar, Varun Narayanan, and Liav Zafar. One-Message
Secure Reductions: On the Cost of Converting Correlations. In: Advances in
Cryptology – CRYPTO 2023, Part I. Aug. 2023. doi: 10.1007/978-3-031-
38557-5_17.

[IKOS04] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Batch codes and
their applications. In: 36th Annual ACM Symposium on Theory of Computing.
June 2004. doi: 10.1145/1007352.1007396.

[IKOS08] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Cryptography
with constant computational overhead. In: 40th Annual ACM Symposium on
Theory of Computing. May 2008. doi: 10.1145/1374376.1374438.

[IKP10] Yuval Ishai, Eyal Kushilevitz, and Anat Paskin. Secure Multiparty Computation
with Minimal Interaction. In: Advances in Cryptology – CRYPTO 2010. Aug.
2010. doi: 10.1007/978-3-642-14623-7_31.

[IOS12] Yuval Ishai, Rafail Ostrovsky, and Hakan Seyalioglu. Identifying Cheaters without
an Honest Majority. In: TCC 2012: 9th Theory of Cryptography Conference.
Mar. 2012. doi: 10.1007/978-3-642-28914-9_2.

[IOZ14] Yuval Ishai, Rafail Ostrovsky, and Vassilis Zikas. Secure Multi-Party Compu-
tation with Identifiable Abort. In: Advances in Cryptology – CRYPTO 2014,
Part II. Aug. 2014. doi: 10.1007/978-3-662-44381-1_21.

[IPS08] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding Cryptography on
Oblivious Transfer - Efficiently. In: Advances in Cryptology – CRYPTO 2008.
Aug. 2008. doi: 10.1007/978-3-540-85174-5_32.

[JLS21] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from
well-founded assumptions. In: 53rd Annual ACM Symposium on Theory of
Computing. June 2021. doi: 10.1145/3406325.3451093.

[JLS22] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability Obfuscation from
LPN over Fp, DLIN, and PRGs in NC0. In: Advances in Cryptology – EURO-
CRYPT 2022, Part I. May 2022. doi: 10.1007/978-3-031-06944-4_23.

[Kat07] Jonathan Katz. On achieving the “best of both worlds” in secure multiparty
computation. In: 39th Annual ACM Symposium on Theory of Computing. June
2007. doi: 10.1145/1250790.1250793.

[Kil88] Joe Kilian. Founding Cryptography on Oblivious Transfer. In: 20th Annual ACM
Symposium on Theory of Computing. May 1988. doi: 10.1145/62212.62215.

202

https://doi.org/10.1007/978-3-662-48000-7_18
https://doi.org/10.1007/978-3-662-48000-7_18
https://doi.org/10.1007/11818175_29
https://doi.org/10.1007/11818175_29
https://doi.org/10.1007/978-3-540-45146-4_9
https://doi.org/10.1007/978-3-031-38557-5_17
https://doi.org/10.1007/978-3-031-38557-5_17
https://doi.org/10.1145/1007352.1007396
https://doi.org/10.1145/1374376.1374438
https://doi.org/10.1007/978-3-642-14623-7_31
https://doi.org/10.1007/978-3-642-28914-9_2
https://doi.org/10.1007/978-3-662-44381-1_21
https://doi.org/10.1007/978-3-540-85174-5_32
https://doi.org/10.1145/3406325.3451093
https://doi.org/10.1007/978-3-031-06944-4_23
https://doi.org/10.1145/1250790.1250793
https://doi.org/10.1145/62212.62215

Bibliography

[Kir11] Paul Kirchner. Improved Generalized Birthday Attack. Cryptology ePrint Archive,
Report 2011/377. 2011. url: https://eprint.iacr.org/2011/377.

[KKPG22] Nishat Koti, Varsha Bhat Kukkala, Arpita Patra, and Bhavish Raj Gopal.
PentaGOD: Stepping beyond Traditional GOD with Five Parties. In: ACM CCS
2022: 29th Conference on Computer and Communications Security. Nov. 2022.
doi: 10.1145/3548606.3559369.

[KMTZ13] Jonathan Katz, Ueli Maurer, Björn Tackmann, and Vassilis Zikas. Univer-
sally Composable Synchronous Computation. In: TCC 2013: 10th Theory of
Cryptography Conference. Mar. 2013. doi: 10.1007/978-3-642-36594-2_27.

[KPPS21] Nishat Koti, Mahak Pancholi, Arpita Patra, and Ajith Suresh. SWIFT: Super-
fast and Robust Privacy-Preserving Machine Learning. In: USENIX Security
2021: 30th USENIX Security Symposium. Aug. 2021.

[KPRS21] Nishat Koti, Arpita Patra, Rahul Rachuri, and Ajith Suresh. Tetrad: Actively
Secure 4PC for Secure Training and Inference. Cryptology ePrint Archive,
Report 2021/755. 2021. url: https://eprint.iacr.org/2021/755.

[KPTZ13] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas
Zacharias. Delegatable pseudorandom functions and applications. In: ACM CCS
2013: 20th Conference on Computer and Communications Security. Nov. 2013.
doi: 10.1145/2508859.2516668.

[LF06] Éric Levieil and Pierre-Alain Fouque. An Improved LPN Algorithm. In: SCN
06: 5th International Conference on Security in Communication Networks. Sept.
2006. doi: 10.1007/11832072_24.

[LN17] Yehuda Lindell and Ariel Nof. A Framework for Constructing Fast MPC over
Arithmetic Circuits with Malicious Adversaries and an Honest-Majority. In:
ACM CCS 2017: 24th Conference on Computer and Communications Security.
Oct. 2017. doi: 10.1145/3133956.3133999.

[LPS04] Ben Lynn, Manoj Prabhakaran, and Amit Sahai. Positive Results and Techniques
for Obfuscation. In: Advances in Cryptology – EUROCRYPT 2004. May 2004.
doi: 10.1007/978-3-540-24676-3_2.

[LV17] Alex Lombardi and Vinod Vaikuntanathan. Limits on the Locality of Pseu-
dorandom Generators and Applications to Indistinguishability Obfuscation. In:
TCC 2017: 15th Theory of Cryptography Conference, Part I. Nov. 2017. doi:
10.1007/978-3-319-70500-2_5.

[LWYY24] Hanlin Liu, Xiao Wang, Kang Yang, and Yu Yu. The hardness of LPN over any
integer ring and field for PCG applications. In: Annual International Conference
on the Theory and Applications of Cryptographic Techniques. 2024.

[Lyu05] Vadim Lyubashevsky. The parity problem in the presence of noise, decoding
random linear codes, and the subset sum problem. In: 2005.

[Méa] P Méaux. On the fast algebraic immunity of threshold functions. Crypt. Commun.
13 (5), 741–762 (2021).

[Méa22] Pierrick Méaux. On the algebraic immunity of direct sum constructions. In:
Discrete Applied Mathematics (2022).

[MRY22] Nikolas Melissaris, Divya Ravi, and Sophia Yakoubov. Threshold-Optimal MPC
With Friends and Foes. Cryptology ePrint Archive, Report 2022/1526. 2022.
url: https://eprint.iacr.org/2022/1526.

203

https://eprint.iacr.org/2011/377
https://doi.org/10.1145/3548606.3559369
https://doi.org/10.1007/978-3-642-36594-2_27
https://eprint.iacr.org/2021/755
https://doi.org/10.1145/2508859.2516668
https://doi.org/10.1007/11832072_24
https://doi.org/10.1145/3133956.3133999
https://doi.org/10.1007/978-3-540-24676-3_2
https://doi.org/10.1007/978-3-319-70500-2_5
https://eprint.iacr.org/2022/1526

Bibliography

[MRY23] Nikolas Melissaris, Divya Ravi, and Sophia Yakoubov. Threshold-Optimal MPC
with Friends and Foes. In: Progress in Cryptology - INDOCRYPT 2023: 24th
International Conference in Cryptology in India, Part II. Dec. 2023. doi: 10.
1007/978-3-031-56235-8_1.

[MST03] Elchanan Mossel, Amir Shpilka, and Luca Trevisan. On e-Biased Generators in
NC0. In: 44th Annual Symposium on Foundations of Computer Science. Oct.
2003. doi: 10.1109/SFCS.2003.1238188.

[NN90] Joseph Naor and Moni Naor. Small-bias Probability Spaces: Efficient Con-
structions and Applications. In: 22nd Annual ACM Symposium on Theory of
Computing. May 1990. doi: 10.1145/100216.100244.

[NSD22] Zachary Newman, Sacha Servan-Schreiber, and Srinivas Devadas. Spectrum:
High-bandwidth anonymous broadcast. In: 19th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 22). 2022.

[OST19] Igor Carboni Oliveira, Rahul Santhanam, and Roei Tell. Expander-Based Cryp-
tography Meets Natural Proofs. In: ITCS 2019: 10th Innovations in Theoretical
Computer Science Conference. Jan. 2019. doi: 10.4230/LIPIcs.ITCS.2019.18.

[OSY21] Claudio Orlandi, Peter Scholl, and Sophia Yakoubov. The Rise of Paillier: Ho-
momorphic Secret Sharing and Public-Key Silent OT. In: Advances in Cryptology
– EUROCRYPT 2021, Part I. Oct. 2021. doi: 10.1007/978-3-030-77870-5_24.

[Ove06] Raphael Overbeck. Statistical Decoding Revisited. In: ACISP 06: 11th Aus-
tralasian Conference on Information Security and Privacy. July 2006. doi:
10.1007/11780656_24.

[OW14] Ryan ODonnell and David Witmer. Goldreich’s PRG: evidence for near-optimal
polynomial stretch. In: Computational Complexity (CCC), 2014 IEEE 29th
Conference on. 2014.

[Pie12] Krzysztof Pietrzak. Cryptography from learning parity with noise. In: Inter-
national Conference on Current Trends in Theory and Practice of Computer
Science. 2012.

[PR18] Arpita Patra and Divya Ravi. On the Exact Round Complexity of Secure Three-
Party Computation. In: Advances in Cryptology – CRYPTO 2018, Part II. Aug.
2018. doi: 10.1007/978-3-319-96881-0_15.

[PR19] Arpita Patra and Divya Ravi. Beyond Honest Majority: The Round Complexity
of Fair and Robust Multi-party Computation. In: Advances in Cryptology –
ASIACRYPT 2019, Part I. Dec. 2019. doi: 10.1007/978-3-030-34578-5_17.

[Pra62] Eugene Prange. The use of information sets in decoding cyclic codes. In: (1962).
[PRTY19] Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. SpOT-Light:

Lightweight Private Set Intersection from Sparse OT Extension. In: Advances in
Cryptology – CRYPTO 2019, Part III. Aug. 2019. doi: 10.1007/978-3-030-
26954-8_13.

[PSWW18] Benny Pinkas, Thomas Schneider, Christian Weinert, and Udi Wieder. Efficient
Circuit-Based PSI via Cuckoo Hashing. In: Advances in Cryptology – EURO-
CRYPT 2018, Part III. Apr. 2018. doi: 10.1007/978-3-319-78372-7_5.

[PVW08] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A Framework for
Efficient and Composable Oblivious Transfer. In: Advances in Cryptology –
CRYPTO 2008. Aug. 2008. doi: 10.1007/978-3-540-85174-5_31.

204

https://doi.org/10.1007/978-3-031-56235-8_1
https://doi.org/10.1007/978-3-031-56235-8_1
https://doi.org/10.1109/SFCS.2003.1238188
https://doi.org/10.1145/100216.100244
https://doi.org/10.4230/LIPIcs.ITCS.2019.18
https://doi.org/10.1007/978-3-030-77870-5_24
https://doi.org/10.1007/11780656_24
https://doi.org/10.1007/978-3-319-96881-0_15
https://doi.org/10.1007/978-3-030-34578-5_17
https://doi.org/10.1007/978-3-030-26954-8_13
https://doi.org/10.1007/978-3-030-26954-8_13
https://doi.org/10.1007/978-3-319-78372-7_5
https://doi.org/10.1007/978-3-540-85174-5_31

Bibliography

[Roy22] Lawrence Roy. SoftSpokenOT: Quieter OT Extension from Small-Field Silent
VOLE in the Minicrypt Model. In: Advances in Cryptology – CRYPTO 2022,
Part I. Aug. 2022. doi: 10.1007/978-3-031-15802-5_23.

[RS21] Lawrence Roy and Jaspal Singh. Large Message Homomorphic Secret Sharing
from DCR and Applications. In: Advances in Cryptology – CRYPTO 2021,
Part III. Aug. 2021. doi: 10.1007/978-3-030-84252-9_23.

[RS22] Rahul Rachuri and Peter Scholl. Le Mans: Dynamic and Fluid MPC for Dishonest
Majority. In: Advances in Cryptology – CRYPTO 2022, Part I. Aug. 2022. doi:
10.1007/978-3-031-15802-5_25.

[RS98] Martin Raab and Angelika Steger. "Balls into Bins" - A Simple and Tight
Analysis. In: Proceedings of the Second International Workshop on Randomization
and Approximation Techniques in Computer Science. 1998. isbn: 354065142X.

[RVV24] Seyoon Ragavan, Neekon Vafa, and Vinod Vaikuntanathan. Indistinguishability
Obfuscation from Bilinear Maps and LPN Variants. In: Cryptology ePrint Archive
(2024).

[Saa07] Markku-Juhani Olavi Saarinen. Linearization Attacks Against Syndrome Based
Hashes. In: Progress in Cryptology - INDOCRYPT 2007: 8th International
Conference in Cryptology in India. Dec. 2007. doi: 10.1007/978-3-540-77026-
8_1.

[SB07] Chris Studholme and Ian Blake. Multiparty Computation to Generate Secret
Permutations. Cryptology ePrint Archive, Report 2007/353. 2007. url: https:
//eprint.iacr.org/2007/353.

[SEK03] Sanders, Egner, and Korst. Fast concurrent access to parallel disks. In: Algorith-
mica (2003).

[SF16] Gabriele Spini and Serge Fehr. Cheater Detection in SPDZ Multiparty Compu-
tation. In: ICITS 16: 9th International Conference on Information Theoretic
Security. Aug. 2016. doi: 10.1007/978-3-319-49175-2_8.

[SGRP19] Phillipp Schoppmann, Adrià Gascón, Mariana Raykova, and Benny Pinkas. Make
Some ROOM for the Zeros: Data Sparsity in Secure Distributed Machine Learn-
ing. In: ACM CCS 2019: 26th Conference on Computer and Communications
Security. Nov. 2019. doi: 10.1145/3319535.3339816.

[SGRR19] Phillipp Schoppmann, Adrià Gascón, Leonie Reichert, and Mariana Raykova.
Distributed Vector-OLE: Improved Constructions and Implementation. In: ACM
CCS 2019: 26th Conference on Computer and Communications Security. Nov.
2019. doi: 10.1145/3319535.3363228.

[SSS22] Peter Scholl, Mark Simkin, and Luisa Siniscalchi. Multiparty Computation with
Covert Security and Public Verifiability. In: 3rd Conference on Information-
Theoretic Cryptography. 2022.

[SSY22] Mark Simkin, Luisa Siniscalchi, and Sophia Yakoubov. On Sufficient Oracles
for Secure Computation with Identifiable Abort. In: SCN 22: 13th International
Conference on Security in Communication Networks. Sept. 2022. doi: 10.1007/
978-3-031-14791-3_22.

[The24] The OpenSSL Project. OpenSSL Cryptography and SSL/TLS Toolkit. https:
//www.openssl.org/. Accessed: 2024-02-12. 2024.

205

https://doi.org/10.1007/978-3-031-15802-5_23
https://doi.org/10.1007/978-3-030-84252-9_23
https://doi.org/10.1007/978-3-031-15802-5_25
https://doi.org/10.1007/978-3-540-77026-8_1
https://doi.org/10.1007/978-3-540-77026-8_1
https://eprint.iacr.org/2007/353
https://eprint.iacr.org/2007/353
https://doi.org/10.1007/978-3-319-49175-2_8
https://doi.org/10.1145/3319535.3339816
https://doi.org/10.1145/3319535.3363228
https://doi.org/10.1007/978-3-031-14791-3_22
https://doi.org/10.1007/978-3-031-14791-3_22
https://www.openssl.org/
https://www.openssl.org/

Bibliography

[Üna23a] Akin Ünal. New Baselines for Local Pseudorandom Number Generators by Field
Extensions. In: Cryptology ePrint Archive (2023).

[Üna23b] Akin Ünal. Worst-Case Subexponential Attacks on PRGs of Constant Degree
or Constant Locality. In: Advances in Cryptology – EUROCRYPT 2023, Part I.
Apr. 2023. doi: 10.1007/978-3-031-30545-0_2.

[UR24] Antoine Urban and Matthieu Rambaud. Robust Multiparty Computation from
Threshold Encryption Based on RLWE. Cryptology ePrint Archive, Report
2024/1285. 2024. url: https://eprint.iacr.org/2024/1285.

[Val84] L. G. Valiant. A theory of the learnable. In: Commun. ACM 11 (Nov. 1984).
issn: 0001-0782. doi: 10.1145/1968.1972. url: https://doi.org/10.1145/
1968.1972.

[Von+63] John Von Neumann et al. Various techniques used in connection with random
digits. In: John von Neumann, Collected Works (1963).

[Wag02] David Wagner. A Generalized Birthday Problem. In: Advances in Cryptology –
CRYPTO 2002. Aug. 2002. doi: 10.1007/3-540-45708-9_19.

[Wee05] Hoeteck Wee. On obfuscating point functions. In: 37th Annual ACM Symposium
on Theory of Computing. May 2005. doi: 10.1145/1060590.1060669.

[WYKW21] Chenkai Weng, Kang Yang, Jonathan Katz, and Xiao Wang. Wolverine: Fast,
Scalable, and Communication-Efficient Zero-Knowledge Proofs for Boolean and
Arithmetic Circuits. In: 2021 IEEE Symposium on Security and Privacy. May
2021. doi: 10.1109/SP40001.2021.00056.

[Yao86] Andrew Chi-Chih Yao. How to Generate and Exchange Secrets (Extended Ab-
stract). In: 27th Annual Symposium on Foundations of Computer Science. Oct.
1986. doi: 10.1109/SFCS.1986.25.

[YGJL21] Jing Yang, Qian Guo, Thomas Johansson, and Michael Lentmaier. Revisiting the
concrete security of goldreich’s pseudorandom generator. In: IEEE Transactions
on Information Theory 2 (2021).

206

https://doi.org/10.1007/978-3-031-30545-0_2
https://eprint.iacr.org/2024/1285
https://doi.org/10.1145/1968.1972
https://doi.org/10.1145/1968.1972
https://doi.org/10.1145/1968.1972
https://doi.org/10.1007/3-540-45708-9_19
https://doi.org/10.1145/1060590.1060669
https://doi.org/10.1109/SP40001.2021.00056
https://doi.org/10.1109/SFCS.1986.25

	Abstract
	Resumé
	Acknowledgments
	Contents
	Overview
	Introduction
	Multiparty Computation (MPC)
	Making MPC more robust - What is this thesis about?

	Better MPC - Security
	MPC with Identifiable Abort
	The Notion of Identifiable Abort
	Our Contributions
	Some Preliminaries
	Informal Technical Overview
	Efficiency Analysis

	MPC with Friends and Foes
	Our Contributions
	Informal Technical Overview

	Faster MPC - Efficiency
	PCGs, PCFs, and the Preprocessing Paradigm
	Our Contributions
	Informal Technical Overview

	Stronger MPC - Weaker Primitives
	Pseudorandom Generators (PRGs)
	Our Contributions
	Structured-Seed Local PRGs
	Applications
	Indistinguishability obfuscation
	Constant-overhead secure computation
	Sublinear Secure Computation and Compact HSS
	Hardness of Learning

	This Thesis
	Papers and Contributions

	Better Security Guarantees for MPC
	MPC with Identifiable Abort
	Introduction
	Our Contribution
	Technical Overview
	Related work

	Preliminaries and Notation
	Modeling Security
	VOLE and Information-Theoretic MACs
	Signatures
	Basic Functionalities

	Online-Extractable Protocols
	Homomorphic Commitments Based on VOLE
	Protocol with Abort
	Online Extractibility of _HCom

	Compiling to Identifiable Abort
	The Compiler
	Identifiable Cheating

	Preprocessing

	MPC with Friends and Foes
	Introduction
	Prior Work
	Related Work
	Our Contributions
	Organization
	Notation

	Definitions
	FaF Security.

	Relation of FaF to Other Notions
	Building Block: Decentralized Threshold FHE
	Three-Round MPC with Weak FaF and Guaranteed Output Delivery
	Optimal-Threshold MPC with Strong FaF and Guaranteed Output Delivery
	Adaptive BGW Against Mixed (Fail-Stop / Passive) Adversaries
	Adaptive BGW Against Mixed (Active / Passive) Adversaries

	Improving Efficiency for MPC
	Compressing Pseudorandom Permutation Correlations
	Introduction
	Technical Overview
	Background
	Main ideas and approach
	Overview of our PCG construction
	Overview of our PCF construction

	Preliminaries
	Homomorphic Secret Sharing
	Programmable Function Secret Sharing and Distributed Point Functions
	Pseudorandom Correlation Generators
	Pseudorandom Correlation Functions

	Constructions
	Doubly-Programmable PCGs
	Permutation PCG From PCG for Biased Bits
	Programmable PCG for (1/6)-Biased Bits from Quasi-Abelian Syndrome Decoding
	Unbiased PCF for Permutations Constructions

	Applications
	Anonymous broadcast via DC-nets
	Single Secret Leader Election

	Optimizations and Evaluation
	Optimizing Programmable PCGs for Biased Bits
	Implementation and parameters
	Benchmarks

	Weaker Primitives for MPC
	Structured-Seed Local Pseudorandom Generators and their Applications
	Introduction
	Our contribution
	Concurrent work

	Preliminaries
	LPN Assumptions
	Useful Lemmas

	Defining Structured-Seed Local PRGs
	Noisy local circuits
	Noisy local PRGs
	Structured-seed local PRGs
	From weak to strong local PRGs

	The Sparse-LPN Assumption
	The sparse-LPN assumption
	Security against linear tests
	The dual distance of random sparse matrices
	A parametrized version of the sparse-LPN assumption
	Amplifying advantage
	Variants: changing the noise or matrix distribution
	Predicate-conditioned sparse-LPN

	A Structured-Seed Local PRG from Sparse LPN
	Compressing unit vectors
	Warm-up: a structured-seed local PRG from regular sparse LPN
	Removing regularity using 2-choice hashing
	Sampling the seed
	Expanding the seed
	Testing the hash functions
	Sampling the hash functions
	Properties of Test
	Efficiency and Security
	Structured-seed local PRGs beyond quadratic stretch
	Structured-seed local PRGs beyond quadratic stretch

	A Structured-Seed Local PRG from Expand-Accumulate Codes
	Applications
	Indistinguishability obfuscation
	Constant-overhead secure computation
	Sublinear secure computation and compact HSS
	Hardness of learning

	Bibliography

