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Abstract. Information-theoretic cryptography argues about security against unbounded
adversaries. We discuss provable-security results for block ciphers based both on the
Feistel and the Substitution Permutation paradigm. We survey important results for the
concrete security of practical instantiations of cryptographic primitives and constructions
based on them.

1 Introduction

One can partition cryptographic research into two classes on the basis of the assumptions
made during any proofs of security: classical and concrete cryptography. So-called “classical”
cryptography is founded on the relatively mild assumption that one way functions exist,
continuing on to develop primitives which achieve a multitude of goals: encryption, authenti-
cation, integrity, commitment schemes, digital signatures and so on. Classically, security is
defined as resilience against adversaries with limited resources, a natural assumption we place
on an adversary. In contrast, the less studied “concrete” cryptography considers security
against unbounded adversaries. This distinction is highly important — classical cryptography
first assumes the existence of a primitive, namely the one way function, whereas concrete
cryptography posits the existence of specific objects with certain desirable combinatorial prop-
erties and ultimately proves unconditional security. These two approaches will be addressed
with greater detail in Sections 1.1 and 1.2.

Roadmap. For the remainder of the introduction, we will define the two “competing” ap-
proaches to cryptography. In Section 2 we introduce the necessary preliminaries that establish
the proper background. In Section 3 we discuss practical constructions of private-key primi-
tives. In Section 4 we introduce and present the most important and recent indistinguishability
results while in Section 5 we argue about the necessity of the stronger notion of indifferentia-
bility and present the most recent and important results within framework. In Section 6 we
present some interesting open problems that we identified while surveying this area.
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1.1 Cryptography: the complexity theoretic approach (the asymptotic
approach)

We will now define the asymptotic (also known as complexity theoretic) approach to arguing
the security of cryptographic schemes. Complexity theoretically, cryptographic security is
proven by first assuming that certain problems are hard for adversaries with limited compu-
tational resources 1. Those hardness assumptions, assumptions on the intrinsic computational
complexity of particular problems, are studied extensively throughout complexity theory.
Security proofs are then done via reduction; a cryptographer essentially shows that if an
adversary manages to break the cryptosystem under consideration then he can solve a (hard)
problem considered to be infeasible. In this asymptotic approach a cryptographic scheme
is considered secure if every probabilistic, polynomial time (PPT) adversary has only a
negligible probability of breaking the scheme.

As a concrete example consider the following: we assume that factoring an integer, which
is a product of two primes, is a problem that has no efficient solution2. The best method
developed for factoring is barely much more efficient than brute-force, i.e. dividing the integer
by all possible prime factors. The RSA cryptosystem was built on the assumption that
factoring is hard. Then, it was proven that efficiently breaking RSA would imply that the
adversary can provide a legendary contribution to mathematics, an algorithm to efficiently
factor a product of two primes. Although the hardness of factoring is unproven, most of the
world’s secure communication depends on this assumption.

The shortcomings of complexity theoretic cryptography are not only visible up close, the
entire field rests upon the famous P vs NP problem. If P 6= NP and one way functions3

exist, then one can derive most private-key cryptography [IL89]. Alternatively, if P = NP
(quite unlikely, but still open) then one way functions do not exist and all cryptographic
constructions with complexity theoretic security are broken.

For a quick, informal proof, consider the following: Let y = f(x) the output of a one way
function f . Define L to be the language of pairs (x′, y) such that x′ is a prefix of some x
for which f(x) = y. L’s membership in NP is straightforward since f is polynomial time
computable and x itself can serve as a witness. We can then use a decider D for L to invert
f (remember that we have assumed P = NP). Upon receiving (y, 1n) for some security
parameter n, starting by the empty string ε, use D to add bits to the prefix until we have
(x, y). Since we know that a preimage of y exists and it has length at most n, then our
algorithm runs in polynomial time.

In some sense there is a need for something “stronger”; ideally, one would like to establish
security independently of any unproven assumptions.

1 Typically, we consider polynomially bounded adversaries.
2 We have no proof of this but we believe that centuries of futile efforts by very smart people is a good

indicator.
3 A function f is a one way function (OWF) if it’s efficiently computable and a polynomial-time algorithm is

able to invert f with negligible probability when the input to the function is chosen uniformly at random.
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1.2 Cryptography: the information-theoretic approach (the concrete approach)

The concrete approach requires no assumptions on the power of an adversary, allowing
for security against an all powerful attacker. In this case the security definition references
measurements typically studied in information theory, such as entropy or statistical distance.
Therefore, this area is also called information-theoretic cryptography but herein is referred
to as concrete cryptography. Specifically, security is measured by bounding the success
probability of any adversary spending some specific amount of computational effort. The
phrase computational effort does not refer to time, as time is no object to an unbounded
adversary, but instead refers to the total number of queries the adversary issues to an
algorithm called an oracle. Concretely, security does not depend on a specific computational
model, thereby ensuring that these schemes cannot be compromised even in the face of new
computational technology or paradigms, such as the development of quantum computers.

In addition to the security notions above, concrete instantiations of cryptographic prim-
itives tend to be much more efficient that the theoretic ones. For example, the best pseu-
dorandom function due to Naor and Reingold [NR04] which is based on number theoretic
assumptions, has key length quadratic to the length. In contrast, typical block ciphers have
key length about the size of the input.

This is the area that we will survey in this work. Research in this direction is deeply
mathematical, based entirely on constructions and proofs. Although an overview of a large
portion of the relevant literature is provided, a selection of papers will be highlighted as
we believe they are of great importance to the field. Simple but important proofs will be
presented in full, while lengthy, involved proofs will be presented at a high level, and any
complicated calculations will be omitted for compactness.

2 Preliminaries and Notation

This section presents notions and constructions relevant to this text. Prior to surveying the
area of information-theoretic cryptography, it must be placed within the larger map by taking
a step back and analyzing the big picture of cryptographic research.

The introduction mentioned that private-key cryptography can only be developed from
the (mild) assumption that one way functions (OWF) exist, a statement that is not very
intuitive. How exactly does a cryptographer construct a cryptographic scheme starting from
an OWF? The answer was provided in a sequence of very important results spanning a e
decade, showing that from any OWF one can construct a pseudorandom generator (PRG),
from which a pseudorandom function (PRF) can be built, and finally, a pseudorandom
permutation (PRP) (essentially, in our setting, a block cipher). Below is an overview and a
description of these constructions:

OWF
[HILL99]
−−−−−−→ PRG

[GGM84]
−−−−−−→ PRF

[LR88]
−−−−→ PRP

Pseudorandom Permutations. Intuitively, a PRP is a permutation that looks like a
completely random permutation to any efficient adversary. To be more precise, the permutation
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appears to be selected uniformly at random from the space of all possible permutations
on n-bits, denoted Pn. It follows that the size of Pn is (2n)!. In fact, to make the security
requirement stronger, the adversary is allowed access to the inverse of the permutation.
Formally:

Definition 1. Let F : {0, 1}κ × {0, 1}n → {0, 1}n be an efficient, length preserving, keyed
function. We call F a strong pseudorandom permutation if for all PPT distinguishers D,
there is a negligible function negl such that:∣∣∣Pr[DFk(·),F−1

k (·) (1n)] = 1− Pr[Df(·),f−1(·) (1n) = 1]
∣∣∣ ≤ negl(n)

where the first probability is taken over the uniform selection of k ∈ {0, 1}n and the second
probability is taken over the uniform choice of f from the space of all permutations on n bits.

As this survey discusses block ciphers, the real world instantiations of pseudorandom
permutations (PRP), the PRP is the theoretical building block of the survey. From PRPs
one can construct (almost) all other private-key primitives, such as private-key encryption,
message authentication schemes, and many others. The connection between this primitive
and block ciphers is explained below.

Block Ciphers. As mentioned, block ciphers are real world instantiations of PRPs. Block
ciphers can simply be seen as keyed permutations E : {0, 1}κ × {0, 1}n → {0, 1}n where for
all keys k, the map E(k, ·) must be efficiently invertible, E−1(k, ·).

In one of the most important works, also cited above, Luby and Rackoff [LR88] created a
PRP from a psuedorandom function (PRF). Thus, it is important to define the PRF as well.
For formal treatment of the Luby-Rackoff construction, see Section 5.1.

Pseudorandom Functions. Since the space of permutations is a subset of the space of all
functions the set of PRFs is a superset of the set of PRPs. In the same fashion as above, a
PRF must look random just as a PRP looks random to any polynomial time distinguisher.
Informally, a distinguisher’s task is to determine if a given function is selected uniformly at
random from the space of all functions (size 2n2n), or is instead selected from a keyed family
of functions, i.e. Fk for some uniform k.

Definition 2. Let F : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ be an efficient, length preserving, keyed
function. We call F a pseudorandom function if for all PPT distinguishers D, there is a
negligible function negl such that:∣∣Pr[DFk(·) (1n)] = 1− Pr[Df(·) (1n) = 1]

∣∣ ≤ negl(n)

where the first probability is taken over the uniform selection of k ∈ {0, 1}n and the second
probability is taken over the uniform choice of f from the space of all functions on n bits.
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We gave the known definitions of PRFs and PRPs where the adversary is computationally
bounded, but in this survey the actual proofs themselves look into the information-theoretic
case where the difference of the probabilities is maximized over all distinguishers, only
bounded by the number of queries to the functions and permutations, but with no further
restrictions on their time complexities.

While the limitations placed on the adversaries are described thoroughly, the general
notion of security remains undefined in this text. The notion of cryptographic security can
be demystified by presenting security definitions and particular attack models.

Definitions of Security. The algorithms for encryption/decryption, E,D, are modeled as
black boxes, oracles, OE and OD that the adversary has access to. Some of the most studied
threat models are game-based security definitions, outlining a game that the adversary plays
with access to only OE or both OE and OD. This distinction plays a big part in the number of
rounds that make the Luby-Rackoff construction secure in Section 5.1. The formal definitions
follow:

• Chosen-plaintext attack (CPA). In this model, an adversary can ask OE to encrypt
plaintexts of his choice. After some time the adversary must produce two messages m0

and m1 to submit to the oracle. The oracle encrypts one of the two messages and returns
E(mb) to the adversary where b ∈ {0, 1} is selected uniformly at random. If the adversary
can detect with probability non-negligibly over 1/2 which message was encrypted, the
adversary wins the game.

• Chosen-ciphertext attack (CCA). In this model, an adversary has access to OD as well.
Again, after requesting encryptions (resp. decryptions) to plaintexts (resp. ciphertexts)
of his choice the adversary produces two messages m0 and m1. The oracle flips a coin,
encrypts one of the messages, and returns E(mb) to the adversary. If the adversary can
tell with probability over 1/2 which message was encrypted then the adversary wins the
game.

Example. Here is a very simple example illustrating that CCA security is a stronger
notion than CPA security. Below is an encryption scheme which achieves CPA-secure
but fails to achieve CCA security. Define the following encyption scheme:

E(k, x) = (r, Fk(r)⊕ x))

where r ∈ {0, 1}n is selected uniformly at random and Fk is a pseudorandom function.
The attacker will send m0 = 0n and m1 = 1n to the encryption oracle and receives
c = Ek(mb). Now, he flips the first bit of the ciphertext creating c′ 6= c and submits it
to the decryption oracle. Now the plaintext returned by the oracle is just m0 or m1

with the first bit flipped. So, with probability 1 the adversary can win the CCA game.

Usually we have an attacker that issues specific queries to the construction. To prove the
computational security in such a case, we follow two steps:
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1. We model the PRF (resp. PRP) as a truly random function (resp. permutation) and prove
the security unconditionally.

2. We observe that when the random function (resp. permutation) is replaced by a PRF
(resp. PRP) then any efficient adversary that succeeds, can be converted into an effi-
cient distinguisheer for the pseudorandom primitives. This contradicts the itractability
assumption.

In the Real World. Although such schemes are theoretically secure, one remaining question
is if the constructions have any use in the real world — can these primitives actually be
constructed in a useful manner?

3 Practical Constructions of Private-Key Primitives

Block ciphers are typically constructed using one of the following two paradigms: Feistel net-
works [Fei73] or substitution-permutation networks (SPNs) [Sha49, Fei73]. Both constructions
are surveyed in this work.

Feistel Networks. The following is an r-round Feistel construction Ψr, which implements
a permutation on 2n-bits: let r ≥ 0 and let F1, . . . , Fr : {0, 1}n → {0, 1}n. A 2n-bit input is
parsed as two halves (L0, R0) and the i-th round is computed as:

Li = Ri−1 , Ri = Li−1 ⊕ Fi(Ri−1)

and the output is (Lr, Rr) after r-rounds. A simple example that uses three rounds can be
seen in Figure 1.

An important aspect of the Feistel construction is that the underlying function F is
not required to be invertible. Therefore, the Feistel network is a way to build an invertible
function from smaller, non-invertible, functions. It should also be mentioned that Luby-Rackoff
constructed a pseudorandom permutation starting from pseudorandom functions in [LR88]
using a Feistel construction, the details of which are analyzed in Section 5.1.

Historically, the Feistel construction was very important as it was used for the data
encryption standard (DES) in 1977 [Nat99]. DES was subsequently replaced in 2001 by the
advanced encryption standard (AES) [Nat01], a cryptosystem that is still used in virtually
all communications. In contrast, AES is built on the substitution permutation paradigm,
addressed in the following section.

Substitution Permutation Networks. Substitution permutation networks (SPN) (cf.
Figure 2) are a special case of the confusion-diffusion paradigm first introduced by Shannon
[Sha49]; the idea of an SPN is to construct a random-looking permutation F from many
smaller random permutations, fi.
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Fig. 1. A 3-round Feistel construction. We will see this later when we discuss about the famous
result of [LR88].

Example. Assume that you want to construct an F with a block-length of 64 bits.
Selecting a key for F will specify 8 smaller permutations f1, . . . , f8 that each have a block
of 8 bits. Then, split the 64 bit input into 84 parts and define F (x) = f1(x1)‖. . . ‖f8(x8).
This is called the confusion step. It should be clear that F is not pseudorandom defined
in this way5, therefore a diffusion step, where the bits of the output are permuted, is
required.

An SPN starts with one or more public permutations on n-bits that “look random” (called
S-boxes) and extend these permutations to construct a keyed pseudorandom permutation on
wn-bit inputs for some w, by applying some number of iterations of the following steps:

• Substitution step: split the wn-bit state into w n-bit blocks, then apply an S-box to each
n-bit block.

4 We define the input: x = x1||. . . ||x8
5 If x and x′ only have their first bit different then only f1(x) and f1(x′) would be different and F (x) and
F (x′) would only differ in their first part. If F were a truly random permutation then changing the first
bit of the input would be expected to affect all the chunks of the output.
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• Permutation step: pass the entire wn-bit state through a non-cryptographic, keyed per-
mutation.

SPNs can be further characterized as linear (or non-linear) based on whether the permu-
tation step is a linear (or non-linear) function.

Fig. 2. The three keys k0, k1, k2, are derived from a single key. This series of keys is called a key
schedule and the derived keys are called round keys.

Along with the construction of practical schemes comes the need to “measure” their
behavior and the proximity of the construction to it’s theoretical counterpart. In particular,
can such a construction can be distinguished from a PRP by any adversary? The concept of
indistinguishability is described in the following section.

4 Indistinguishability

This section describes a concept to is used towards the analysis of cryptographic constructions,
namely indistinguishability. Secure encryption schemes are created from small6 building blocks

6 If we wanted to have a truly random function on n-bits we would need to specify the output for every
possible input. There are 2n possible inputs, each needing log(n) bits to be described so we would 2n log(n)
bits only to specify the function.
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(called primitives) such as pseudorandom generators, pseudorandom permutations, and hash
functions. Naturally, it would be ideal to have a method to construct these primitives for use
in practice while preserving any nice properties, in order to establish security of the designed
scheme. Unfortunately, this is not an easy task.

4.1 The Ideal Cipher and the Random Oracle Model

One approach is to rely on the so-called ideal primitive model. In this model, the building
blocks of a cryptographic scheme are replaced with an idealized information-theoretic version.
The most prominent example of this idea is the Random Oracle Model [BR93]. In the random
oracle model, instead of making the assumption that a scheme is secure when using a specific
hash function (e.g SHA-2567), one assumes access to a truly random function. As the notion
of hash functions has not yet been introduced, it is important to do so now for this example.

Hash Functions. Generally speaking, hash functions are functions that take inputs of
(possibly different) lengths and compress them into a shorter, fixed length output. In cryp-
tography, hash functions are designed to be collision resistant, meaning that an adversary
with access to the hash function cannot efficiently produce inputs x, y such that x 6= y but
H(x) = H(y). Families of hash functions Hk(x) are such that for a uniformly selected key k,
it is hard for an efficient adversary to find x, y such that x 6= y but Hk(x) = Hk(y) even after
interacting with the function for some polynomially bounded time. It is important to note
that even though hash functions are deterministic their output size makes it infeasible to
invert them as they model random functions.

The example above references SHA-256, a specific hash function where the output is 256
bits which means that there are 2256 possible outputs. This implies that -by the birthday
paradox- an adversary needs about 2128 hashes before there is a significant probability of
finding a collision. This is a very large number. With the ability to compute 1015 hashes per
second, it would still take about 1013 years to gather as many hashes. In comparison, the
universe is about 109 years old.

In the Ideal Cipher model it is assumed that all parties have access to a random permutation
as well as its inverse. For example, as opposed to performing difficult calculations based
on how AES is constructed it is assumed that AES will behave as an ideal cipher. This
modelling assumption is not unfounded; years of scientific effort have been devoted towards
the cryptanalysis of AES since its inception without any significant progress in terms of
breaking it [FKL+00, GM00, HLL+00, Luc00, Bir04].

Security is then proven by assuming an unbounded adversary that has oracle access to the
idealized primitive. The ideal primitive model has been used extensively and for good reason
– this model helps with the design of simple, practical and efficient solutions to numerous
problems.

The next section formally discusses how to argue and prove that a given construction is
close to an idealized one.

7 Although the SHA family of functions are keyless, we can think of SHA as being a keyed hash function by
thinking of the key as being part of the input (appropriately embedded)
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4.2 Indistinguishability

Above, we alluded to the notion of “closeness” between two constructions: the real construction
and the idealized one. These two constructions should be indistinguishable by any unbounded
adversary that has oracle access to both the real construction and the idealized version8.
Formally:

Definition 3. Two systems S and T are indistinguishable if there exists a negligible function
negl such that for the advantage of all distinguishers D and for all n we have:

|Pr[D(S) = 1]− Pr[D(T ) = 1]| ≤ negl(n)

The following section surveys some existing indistinguishability results that were proved
for Feistel constructions.

4.3 Indistinguishability of Feistel constructions

Feistel networks have received great attention by the research community, resulting in a line
of important results starting with Luby and Rackoff [LR88]. As mentioned, Luby-Rackoff
proved that it is possible to construct pseudorandom permutations (which can be used as
block ciphers) from pseudorandom functions9. The interest in this particular work stems not
only from the novelty of the notion of indistinguishability, but because of the very natural
construction based on an r-round Feistel network with independent random functions as
round functions.

In a security proof involving PRFs the most difficult step is the analysis with an idealized
primitive and proving that the resulting construction is information-theoretically indistin-
guishable from a another idealized primitive. Luby-Rackoff replace the PRFs in the Feistel
construction with truly random functions and prove that the construction is indistinguishable
from a random permutation when allowed only a bounded number of queries. Luby and
Rackoff prove that 3-round random Feistel schemes are secure against all adaptative chosen
plaintext attacks when the number of queries is m� 2n/2, while 4-rounds are secure against
chosen ciphertext attacks for the same number of queries10. For the latter case we say that
the 4-round Feistel construction satisfies the strong-PRP property. Naor and Reingold [NR99]
made the Luby-Rackoff construction simpler by replacing the first and last rounds by pairwise
independent permutations.

We will now show that the 3-rounds Feistel (denoted as Ψ3 from now on) construction is
a pseudorandom permutation and then show it doesn’t satisfy the strong PRP property by
giving a concrete attack:

8 There is also the notion of computational indistiguishability which holds against PPT adversaries.
9 Aside note: interestingly we do not know how to construct a one-way permutation from a one-way function,

and it is also believed that this is not possible under standard techniques.
10 The bound m� 2n/2 is called the “birthday bound”, i.e. it is about the square root of the optimal bound

against an adversary with unbounded computing power.
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Fig. 3. Indistuinguishability of a Feistel construction. The distinguisher A that issues at most q
queries, interacts either with the Feistel construction Ψ3 (possibly backwards too) or a random
permutation. The goal is to be able to tell with non negligible advantage, with which world he is
interacting.

Proof. For our analysis, we model the round functions f1, f2, f3 of the Feistel construction as
PRFs on n-bits and we want to show that the advantage of any distinguisher that tries to
tell apart Ψ3 from a PRP π on 2n-bits issuing at most q queries to its oracle, is negligible.
Formally we want: ∣∣Pr[DΨ3(1n) = 1]− Pr[Dπ(1n) = 1]

∣∣ ≤ negl

Denote with (Li0, R
i
0) the i-th query that D asks the oracle and in the same fashion, denote

by (Li3, R
i
3) the oracle’s answer. Our proof strategy will be to show that for q queries, even

when Ψ3 is queried, the answers of the oracle will be uniformly distributed bits.

We define a collision at round k if we have Ri
k = Rj

k for i 6= j and we show that the
probability of a collision in the first round is small:

If we have Ri
0 = Rj

0 for some i 6= j then in order for the entire inputs to be different,
we have Li0 6= Lj0. Then, at the end of the first round, the R0 values will be XORed with
not-equal L0 values so the result will be something not-equal:

Ri
1 = Li0 ⊕ f1(Ri

0) 6= Lj0 ⊕ f1(Rj
0) = Rj

1
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which means that because we think of f as a random function the probability of a collision
after the first round is:

Pr
[
Li0 ⊕ f1(Ri

0) = Lj0 ⊕ f1(Rj
0)
]

= 2−n

In q queries all distinct pairs of i, j are O(q2) so by union bound the probability of collision
after the first round is q2/2n.

Now, conditioned on the fact that there was no collision in the first round, we prove that
the probability of a collision in the second round is small. Following the previous reasoning
and changing practically nothing, we know that since Ri

1 6= Rj
1 then f2(R

i
1) and f2(R

j
1) as

outputs of random functions are independent and uniform which means that the probability
of collision is:

Pr
[
Li1 ⊕ f2(Ri

1) = Lj1 ⊕ f2(Rj
1) | no collision in the first round

]
= 2−n

Taking the union bound over distinct pairs (i, j) as in the first round, we get that the
probability of not getting a collision on the second round given that there was no collision in
the first round is ≤ q2/2n.

Conditioning on the fact that there is no collision in the second round, we get that
Li3 = Ri

2 which are all independent and uniformly distributed and that the Ri
3 = Li2 ⊕ f3(Ri

2)
are also independent and uniform. Thus, we get back a 2n-bit string in which the first n-bits
are uniformly distributed and the second n-bits are uniformly distributed. When we query a
pseudorandom permutation we get 2n uniformly distributed bits. The distinguisher’s best
strategy is to guess that it is interacting with a PRP when he sees Li3 = Lj3 for some i 6= j,
something which happens with neglible probability.

Additionally, a short intuitive proof is provided below, as to how the 3-round construction
fails when the adversary is allowed access to a decryption oracle. Consider the following
adversary A:

1. Query the decryption oracle for the decryptions of 0, 0:
D(0||0)→ (x1, x2)

2. Query the encryption oracle for 0, x1:
E(0||x1)→ (y1, y2)

3. Query the decryption oracle for (x2 ⊕ y2, y1):
D(x2 ⊕ y2, y1)→ (x3, x4)

4. If x3 = y1 ⊕ x1 output 1,
else output 0

Claim. Adversary A can distinguish between a 3-round Feistel construction and a pseudoran-
dom permutation with non-negligible probability.

Proof (of Claim). From the definition of the Feistel construction, we have the following
values:
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• x1 = Fk2 (Fk3(0))

• x2 = Fk3(0)⊕ Fk1(x1)

• y1 = x1 ⊕ Fk2 (Fk1(x1))

• y2 = Fk1(x1)⊕ Fk3(y1)

From the above it’s easy to see that:

• x2 ⊕ y2 = Fk3(0)⊕ Fk3(y1)

So at the last carefully selected query we get:

x3 = y1 ⊕ Fk2(x2 ⊕ y2)⊕ Fk3(y1) =

= y1 ⊕ Fk2 (Fk3(0)) =

= y1 ⊕ x1

This is exactly as expected and is not a behavior that a pseudorandom permutation
would exhibit. Thus, an adversary can easily distinguish between this construction and a
pseudorandom permutation if allowed access to a decryption oracle.

Patarin made improvements, showing that 7-round constructions achieve for CPA security
when the number of queries is m � 2n(1−ε) and 10 rounds are enough for CCA security
[Pat03]. Additionally, Patarin studied random Feistel schemes when m� 2n, showing that
5-round random Feistel schemes are CPA (see Section 2) secure and 6-round random Feistel
schemes are CCA secure [Pat04]. Crucial to his methodology is the “H-Coefficients” technique,
first introduced in [Pat91]. Below is a high level overview of this technique, as it is crucial for
other proofs presented in this survey.

H-coefficients technique. As usual, consider an information-theoretic distinguisher, D,
interacting with two worlds: the “real world” and the “ideal world”. D maintains a list of all
the queries made along with the responses returned, called a transcript. If T denotes the set of
all possible transcripts, various elements of T have higher probability of appearing depending
upon which world is responding to the distinguisher. The distinguisher then attempts to
recognize which world he is interacting with on the basis of the recorded transcript. If X, Y
is the distribution on the transcripts of the real world and the ideal world respectively, then
D’s advantage can be easily upper bounded by the statistical distance:

∆ (X, Y ) =
∑
τ∈T

|Pr[X = τ ]− Pr[Y = τ ]|

The main observation of the technique is to bound ∆ (X, Y ) by using the fact that11:

∆ (X, Y ) = 1− Eτ∼Y [min (1,Pr[X = τ ]/Pr[Y = τ ])]
11 Here, Eτ∼Y [Z(τ)] denotes the expected value of the random variable Z(τ) when τ is sampled from Y and

if Pr[Y = τ ] = 0 then min (1,Pr[X = τ ]/Pr[Y = τ ]) = 1
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4.4 Indistinguishability of SPN constructions

We start this section by discussing a very important paper that gives candidate PRFs that
are based on the SPN structure [MV15]. The importance of this work stems from the fact
that it is the first attempt to define such PRFs, but also it is the first attempt to bridge
the gap between the world of theory and the world of practice. As we have discussed, in
theory we have security guarantees from some hardness assumption while in practice security
is heuristic. In theory though the best PRF has key length quadratic to the length of the
input [NR04], while in practice, the key length is about as big as the size of the input. In
this work, the proposed PRFs are more efficient than previous constructions. In addition this
is the first paper that gives an asymptotic analysis of the SPN structure.

Miles and Viola [MV15] take a complexity theoretic approach in defining security for
SPNs. The authors give several candidate constructions for PRFs based on the SPN paradigm
and more specifically the design of the AES S-boxes. The work analyzes linear SPNs where
the underlying S-boxes where not necessarily permutations. In their construction the authors
prove that r-rounds, for r ≥ 2 are enough for CPA security. The bound worsens as the number
of block cipher rounds increases. They also show security against linear/differential attacks
for r = Θ(log n) number of rounds. Below is an explanation of two of their most important
candidate constructions.

The following notation is used and will make the description of the constructions easier:

• b ∈ N, the S-box input size.

• m ∈ N, the number of S-box invocations per round.

• S : GF (2n)→ GF (2n), the S-box.

• M : (GF (2n))m → (GF (2n))m, the linear transformation.

The first candidate F1 is the first construction of a provably secure (but inefficient) PRF
using the SPN design paradigm. It is an r-round SPN where the S-box is chosen uniformly
at random from all the functions that map GF (2n) to itself. The linear transformation M
needs to have all non-zero entries (something which holds for any M with maximal branch
number12). The resulting construction cannot be distinguished, by any adversary A, from a
random function F :

Theorem 1. For any adversary A that makes at most q queries to its oracle:∣∣Pr[AF = 1]− Pr[AF1 = 1]
∣∣ < O(r2m3q3) · 2−b

12 For a linear transformation M : Fm → Fm we define the branch number of M as

Br(M) = min
α∈Fm\0m

((w(α) + w (M(α)))

where w(·) is the number of non-zero elements.
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The techniques used are similar to [LR88] but since the S-box is not a permutation in
this case, backwards queries are not allowed. At first it is counter intuitive, but the fact that
the bound seems to get worse as the number of rounds increases but this is a feature of
the specifics of their argument. By carefully examining the proof we see that only r ≥ 2 is
required.

The proof has two stages. In the same way that most of the proofs go, in the first stage it
is shown that for a set of distinct queries x1, . . . , xq, there exists a low probability bad event
such that the output of the function is uniformly distributed if this bad event does not occur.
By bad event we mean the case where two different queries induce the same output to some
S-box in the final round. Formally:

Lemma 1. Pr[BAD] < O(r2m3q3) · 2−b

By bounding the probability of a bad event:

Lemma 2. For any distinct x1, . . . , xq and any y1, . . . , yq:

Pr [∀i ≤ q : F1(xi) = yi|¬BAD] = 2−qmb

Now, conditioning on the fact that these bad events do not happen, the proof of the
second lemma is fairly straightforward. The qm elements of the set {z(`)

i }i,`13 are distinct
and have not already been used. This means that every element has 2−b probability of being
mapped by S to a corresponding output.

The proof of the theorem follows immediately by those two lemmas when we consider the
distribution of transcripts of A after its interaction with its oracles.

Example (A concrete instantiation). The only parameter we can fix is b since m
will depend on it. As we discussed only r ≥ 2 is required. So we can see that if we set
b = c log n and r = 2 (and we restrict q = poly(n) we get a PRF that is computable in
time nO(c) and has security nc

′
for some c′ = Ω(c).

The other interesting candidate of this work is F4. We describe a modified version of F4

briefly.
First we have that for the PRF candidate with seed (k0, k1)

2n, one round and a single
S-box:

F4(x) = (x+ k0)2n−2 + k1

we can recover the seed with only four known input/output pairs. A short proof of this
follows:

Proof (of Lemma 2). Let x1, x2, x3, x4 be inputs such that x1 + x2 6= x3 + x4. Assume that
k0 6= xi for all i ∈ {1, 2, 3, 4} which happens with probability (1− 1/2n−2). If we write
yi = F4(xi) then the equation:

(yi + k1) · (xi + k0) = 1

13 zi denotes the state of the SPN’s computation immediately before the final round of S-boxes for the i-th
query.
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is true for i ∈ {1, 2, 3, 4}. Expanding the equation above we get:

k0k1 + yik0 + xik1 + yixi = 1 (1)

If we sum equation 1 for i = 1, 2 we get:

(y1 + y2)k0 + (x1 + x2)k1 + (y1x1 + y2x2) = 0

because the quadratic terms cancel out.
By summing for i = 3, 4 we get another linear equation in k0, k1 so by solving them, we

can extract the seed (k0, k1).
Even in the case where y1 + y2 = y3 + y4, we can recover k1 because x1 + x2 6= x3 + x4

and then recover k0 from the initial equation.

One very elegant aspect of this paper is the presentation of a candidate PRF which can be
computed by a quasilinear circuit of size Õ(n) while other theoretical constructions of PRFs
have superlinear or even quadratic circuit size. This PRF is shown to have exponential security
against a wide class of attacks, which makes it fall a bit short of the optimal (asymptotically)
goal.

In later work, [BIP+18] gave the first candidate for an asymptotically optimal strong PRF,
which means that super-linear circuit lower bounds cannot have natural proofs (a concept
introduced in [RR97]). In particular that candidate is F ′4 : {0, 1}n → {0, 1} which is:

F ′4 = 〈(x+ k0)2n−2 , k1〉

where the single S-box is combined with the Goldreich-Levin hardcore predicate [GL89]. This
construction fools all parity tests that look at less than 20.9n outputs which is stated by the
following theorem.

Theorem 2. For any choice of d ≤ 2n, F ′4 is a d-wise small-bias generator with error d/2n.
For any distinct a1, . . . , ad ∈ {0, 1}n we have:∣∣∣∣∣ Pr

k0,k1

[
d∑
i=1

F ′4(ai) = 0

]
− 1

2

∣∣∣∣∣ < d

2n

The theorem above is proven by showing that the polynomial p(x) =
∑

i≤d(ai + x)2n−2

has at most 2d− 1 distinct roots which means that when k0 is not a root we have:

Pr [〈p(k0), k1〉 = 0] =
1

2

which means that: ∣∣∣∣∣ Pr
k0,k1

[
d∑
i=1

F ′4(ai) = 0

]
− 1

2

∣∣∣∣∣ ≤ 1

2
Pr[p(k0) = 0] <

d

2n
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A fundamental shortcoming of the notion of indistinguishability is easily identifiable. A
security proof using ideal primitives is only a heuristic indication of the security of the same
scheme when using practical instantiation. For example, proving security in the random
oracle model gives us certainty about the design of the scheme. As a potential break, the
hash function used could not be well behaved enough. Moreover, there exist schemes that are
considered secure in the random oracle model but completely break down when we replace
the random oracle with any practical instantiation [CGH04].

To overcome this gap, a framework called indifferentiability [MRH04] was proposed. This
framework is discussed in the following section.

5 Indifferentiability

As discussed in the previous section, the notion of indistinguishability is not enough to argue
about the security of schemes and their proximity to idealized versions.

For this reason, a framework called indifferentiability [MRH04] was proposed. This
framework provides a way to discuss the security of idealized constructions. For example, we
can meaningfully talk about how “close” a block cipher construction is to an ideal cipher.
More concretely, systems S and T are indifferentiable if the security of any cryptosystem
using T as a component is not affected when T is substituted by S. In addition, if S is
differentiable from T then there exists a cryptosystem instantiated with one system that is
secure, but becomes insecure when instantiated with the other system.

In order to fully understand this framework one can consider a block cipher based hash
function that is indifferentiable from a random oracle in the ideal cipher model. Assume
there is a scheme that utilizes a random oracle and is therefore secure in the random oracle
model. Then, the scheme remains secure in the ideal cipher model after replacing the use of
the random oracle with a hash function. We will treat this more formally in the upcoming
section.

At a first glance, the notion of indifferentiablity seems to be very similar to the standard
notion of indistinguishability that we saw in Definition 3. The drawback of indistinguishability
is that it only applies in the black box case, where adversaries do not have any access to
the inner workings of these systems. To resolve this, an extension to this definition called
indifferentiability, where the adversary has access to public interfaces14 of the system (a
cryptosystem, or even a primitive), was developed. For example, a random oracle can be
thought of as a public system. The interfaces to all participants are identical, thus the
adversary has the same access as everyone else. If there is a system that an adversary does
not have access to we say that that system has a private interface, accessible only to the
honest parties.

Example. To prove that a construction C -that uses a random function R- is “as
good as” an ideal cipher E, it is necessary that CR and E are indistinguishable, but it
is not sufficient, as the adversary can exploit access to the oracle R.

14 An interface is a way that the participants can interact with the system.
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The previous example requires indistinguishability between
(
CR, R

)
and

(
E, SE

)
where S

is a simulator with access to E. The simulator is a new concept explained here. The objective
is to fool all distinguishers so that they cannot determine whether they are interacting with
CR, R or with the ideal cipher E. In the “world” of the ideal cipher there is no R, so a
distinguisher would immediately know that he is not interacting with CR, R. Therefore, for
indistinguishability, the simulator is a system that will try to mimic the replies of R as closely
as possible.

Definition 4. A system C that has access to ideal primitives P is (tS, qS, ε)-indifferentiable
from an ideal primitive Z if there exists a simulator S such that:

Advindif
C,Z,S (D) =

∣∣∣Pr
[
DCP ,P = 1

]
− Pr

[
DZ,S

Z
= 1
]∣∣∣ ≤ ε

for all distinguishers D that make at most q queries to their oracles.

The simulator S runs in total time tS and makes at most qS queries to Z. We note that
tS, qS, and ε are functions of q.

The job of the distinguisher is to try and answer with non-negligible advantage probability
whether it’s interacting with one of the two following worlds (cf. Figure 4):

• The real world in which the distinguisher has access to the construction CP and the
primitives P .

• The ideal world in which the ideal primitive Z has taken the place of CP and the primitives
P are substituted by the simulator S.

To prove indifferentiability, S is built in such a way that it succeeds in making CP “look
like” Z by trying to provide the proper replies to the queries that D sets to the primitives P .
In order to have any chance in succeeding at this task, S can query Z itself. To make this
construction non-trivial, S cannot see the queries that D submits to Z.

5.1 Indifferentiability of Feistel Networks

Feistel networks saw important results within the indifferentiability framework too. One
of the most important papers in this line of work is due to Coron et al. [CHK+16] which
combines results and techniques from [CPS08] and [HKT11]. There are two main results.

First, the authors prove that 5 rounds of Feistel are not indifferentiable (thus we need
at least 6 rounds). Second, they prove that 14 rounds of Feistel are indifferentiable from an
ideal cipher, thereby proving the equivalence of the ideal cipher model and the random oracle
model.

The first result is shown by constructing a distinguisher that can find four inputs
(x0, x1), (x′0, x

′
1), (x′′0, x

′′
1), (x′′′0 , x

′′′
1 ) with corresponding outputs (x5, x6), (x′5, x

′
6), (x′′5, x

′′
6), (x′′′5 , x

′′′
6 )

such that:

x1 ⊕ x′1 ⊕ x′′1 ⊕ x′′′1 = 0 , x5 ⊕ x′5 ⊕ x′′5 ⊕ x′′′5 = 0
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Fig. 4. Indifferentiability of a Feistel construction. The distinguisher D interacts either with the
real world where he has access to Ψ3 and the round functions F1, F2, F3 or with the ideal world
where he has access to a random permutation. In the ideal world there are no round functions so
we use a simulator in their place. The simulator has access to the ideal primitive and tries to give
answers to the distinguisher’s queries that are consistent with the evaluations of the ideal primitive.

If the construction was indeed a random permutation then the task of finding such inputs
would be hard and any efficient simulator would fail to create consistent answers to the
distinguisher’s queries. Thus, we have the following theorem that has a simple proof:

Theorem 3. The 5-round Feistel construction using five independent random functions is
not indifferentiable from a random permutation.

Proof. We construct a distinguisher D as follows:

1. D chooses x3, x
′
3, x4 arbitrarily (where xi is the input to the round function Fi)

2. Computes x2 = x4 ⊕ F3(x3) and x′2 = x4 ⊕ F3(x′3)

3. Compute: 
x1 = x3 ⊕ F2(x2) , x0 = x2 ⊕ F1(x1)

x′1 = x′3 ⊕ F2(x′2) , x′0 = x′2 ⊕ F1(x′1)

x′′1 = x′3 ⊕ F2(x2) , x′′0 = x2 ⊕ F1(x′′1)

x′′′1 = x3 ⊕ F2(x′2) , x′′′0 = x′2 ⊕ F1(x′′′1 )
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4. If x1, x
′
1, x
′′
1, x

′′′
1 are not pairwise independent, return 0.

5. Issue the following queries:

• (x5, x6) = P (x0, x1)

• (x′5, x
′
6) = P (x′0, x

′
1)

• (x′′5, x
′′
6) = P (x′′0, x

′′
1)

• (x′′′5 , x
′′′
6 ) = P (x′′′0 , x

′′′
1 )

6. If x5 ⊕ x′5 ⊕ x′′5 ⊕ x′′′5 = 0 return 1, else return 0.

When interacting with the ideal world, the probability that x5⊕x′5⊕x′′5 ⊕x′′′5 = 0 is less than
q4/2n so if q (the number of queries) is polynomial in n then this probability is negligible.

On the other hand, when interacting with the real world, since x3 6= x′3 by definition then
the probability that F3(x3) 6= F3(x′3) is 1− 1/2n. Conditioned on that we have that x2 6= x′2
and by following the same logic for the rest we get that with probability 1− 4/2n the inputs
x1, x

′
1, x
′′
1, x

′′′
1 are pairwise different. So when computing the Feistel construction we get:

x5 = x3 ⊕ F4(x4)

x′5 = x′3 ⊕ F4(x4)

x′′5 = x′3 ⊕ F4(x′4)

x′′′5 = x3 ⊕ F4(x′4)

which means that always x5 ⊕ x′5 ⊕ x′′5 ⊕ x′′′5 = 0 and we can always distinguish the real from
the ideal world.

The second important result can be summarized in the following theorem. As a corollary,
that the random oracle model is equivalent to the ideal cipher model.

Theorem 4. The 14-round keyed Feistel construction using a random oracle is indifferen-
tiable from an ideal cipher. For an ideal cipher with κ-bit key and 2n-bit inputs and any
distinguisher making at most q queries, the simulator makes at most 1400q8 queries and runs
in time O(q8)15.

Although there was proof that a Feistel construction with 6 rounds and independent
random round functions is indifferentiable from a random permutation in [CPS08], Holestein
et al. in [HKT11] showed a distinguisher for the simulator used, effectively negating the result
of Coron et al. On the bright side, based on its ideas and introducing their own ideas they
managed to prove that a Feistel construction with 14 rounds is indifferentiable from a random
permutation16. The proof is quite involved, spanning almost 20 pages and 30 lemmas. The
proof can be summarized as follows:

15 The distinguishing advantage is at most
108q17

22n
+

1022q11

2n
16 The simulator used is very similar to the one used in [Seu09] which had an incorrect proof about the

indifferentiability of 10-rounds Feistel construction.
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We have 4 worlds that the distinguisher D interacts with: W1,W2,W3,W4. We start with
the first world, W1 where D interacts with (S, SP ) where S is the simulator and P is a random
permutation. We aim to “reach” the final world W4 where D will be interacting with a Feistel
construction using random functions by making indistinguishable changes in between. As
mentioned before, the simulator needs to enforce consistency of the values of Fi(xi) with P .
A sequence of values x1, . . . , xr such that Fi(xi) is set by the simulator is called a chain.

Fig. 5. The set uniform positions of the buffer zones are marked with green. The detect zones are
marked with red, while the adapt zones are marked with blue. When the detect zone is filled, it
triggers the completion of the entire chain.

To transition from W1 to W2 we replace P with a two-sided random function17 R that
uses randomness p possibly different than the simulator’s randomness f . A two-sided random
function is statistically indistinguishable from a random permutation, so R is indistinguishable
from P .

To switch to W3 we replace R with the 14-round Feistel construction which uses the same
explicit randomness h as the simulator.

The simulation strategy (cf. Figure 5) considers only a carefully chosen set of partial
chains18: In order for the simulator to preemptively find P (x0, x1) = (x14, x15), two detect zones
are fixed. Detect zones, are sets of consecutive rounds {1, 2, 13, 14} , {7, 8}. Every time the
simulator assigns a value to Fi(xi) it checks if there exists a tuple of the form (x1, x2, x13, x14

such that all F1(x1), F2(x2), F13(x13), F14(x14) have been assigned and P (F1(x1)⊕ x2, x1) =
(x14, F13(x13)⊕ x14) or if a tuple of the form (x7, x8) exists such that F7(x7) and F8(x8) have
been assigned. When there is a new query for Fi with input xi, S sets Fi(xi) to a new random
value and looks for the new relevant partial chains that involve xi, adding them to a queue.

Then, until the queue is empty, S dequeues the first partial chain and completes it to a
full chain x1, . . . , xr such that P (x0, x1) = (x14, x15)19. When a partial chain includes both x1

and x14, we call it wraparound.

17 A two-sided random function is very similar to a random invertible permutation. It stores two lists Lx and
Ly and an invertible mapping from Lx to Ly. When queried on an element that it hasn’t seen before (not
in the list), it returns a uniformly random answer from {0, 1}n. In case a collision happens, the previous
element is removed from the list and the mapping is updated accordingly.

18 Contiguous subsequence of a chain.
19 Here x0 = F1(x1)⊕ x2 and x15 = F14(x14)⊕ x13
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Example. Say that there is a query x14 which is answered with F14(x14) and then this
output is used to query the first function F1(). These queries would be a wraparound.

Another important aspect is the 4-round buffer zone which is placed in order to ensure
that overwrites do not happen. The simulator has 2 4-round buffer zones that correspond to
rounds {3, 4, 5, 6} and {9, 10, 11, 12}. In those buffers, positions {3, 6} and {9, 12} are the set
uniform positions and the rest are called adapt positions. It is proven that when a chain is
about to be completed, the set uniform positions are always unassigned. This ensures that
that only after F3(x3) is assigned, is x4 determined so the probability that F4(x4) has already
been assigned is negligible.

One of the main parts of this proof is to show that the worlds W2(f, p) and W3(h) can be
distinguished with negligible probability for uniformly random f, p, h. Will give a high level
overview of it in the next paragraph.

In order to present this proof a bit succinctly, we will work conditioned on the fact that
bad events do not happen. Additionally, we do not present the proof that randomly chosen
(f, p) are good with high probability. We need the following claims:

1. No values in the table Gl are overwritten by the simulator20.

2. After an execution of W2(f, p), for any primitive table entry P (x0, x1) = (x14, x15), if
we emulate the evaluation of the Feistel construction using tables G, we will also get
(x14, x15).

So now, conditioned on that executions in (f, p) are good we can provide a map between
(f, p) and h, τ(f, p) = h which is the following: for any i and x let h(i, x) = Gi(x) if x ∈ Gi ,
and h(i, x) = ⊥ otherwise.

The claims allow us to prove that all the (query,answer) pairs to f (or h) by the simulator
and the ones to R are indistinguishable making W2(f, p) indistinguishable from W3(τ(f, p)).

When the simulator sets Gi(x) = f(i, x) in W2(f, p), then Gi(x) = f(i, x) in the end of
the execution (and thus by definition of τ we have h(i, x) = f(i, x)). The answer to a query
P (x0, x1) is exactly the same as the one given by the Feistel construction at the end of W2.
But each query that calls the Feistel construction for an evaluation but agree with h since we
know that values are not being overwritten. This means that the query to P is answered the
same by the Feistel construction in W3(h).

So when a query is issued by either the simulator or the distinguisher for P (x0, x1)
(backwards queries P−1(x14, x15) are handled in the same way) it gets the same answer in
W2(f, p) and W3(h) and this concludes the proof.

After this work, which was focused on the simplicity of the proof rather than optimizing
the number of rounds, the natural question to ask is: how small can the numbers of rounds
be in order to achieve indifferentiability of the Feistel construction and the ideal cipher? Two
closely published results gave positive answers. Firstly, in [DKT16], indifferentiability was

20 Gk(x) is the value stored for query x on round function Fk.
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shown for 10-rounds. Then, in [DS16], indifferentiability was shown for 8-rounds. These two
papers follow [CHK+16]21 closely, the differences in approach are outlined below.

In [DS16] small modifications are made to optimize the simulator used in [DS15]22 which
part of it can be seen in Figure 6.

Fig. 6. The detect zone of the simulator is marked with red, while the adapt zone is marked with
blue. When the detect zone is filled, it triggers the completion of the entire chain. When a query for
F6 fills the detect zone, then 7,8 becomes the adapt zone, while if a query for F5 fills the detect
zone, 3,4 becomes the adapt zone.

The main difference with the 14-round simulator is that they do not use separate buffer
zones, thus easily reducing the number of rounds. The functionality of the buffer zone is
still needed though so they use the rounds adjacent to the detect zones as their buffer zones.
These are called the endpoints. We will provide a small example as to how the simulator
works following the diagram in Figure 6.

Example. Lets say that the distinguisher asks for x3. This value, either exists, and
is returned, or it is being set randomly. Then the distinguisher asks for x5 (which
belongs to the detect zone) so this path is marked as pending but no completion is
yet triggered. Say that the distinguisher asks for x6. Now the detect zone is filled
and the chain completion is being triggered. Because 7,8 are the adapt positions, the
simulator will evaluate backwards the functions, at rounds 4,3,2,1 in that order. Then
it will evaluate the entire permutation forward to get x11 and will continue to evaluate
positions 10, 9 and finally adapt positions 8,7 according to the permutation evaluation.
If x6 was asked first and then the distinguisher issued x5, thus filling the detect zone
from the right, the adapt zone would be 3,4 and the completion of the chain would be
the opposite way than what was decribed before.

21 Which in turn follows [Seu09]
22 This concurrent work with Dachman-Soled et al. proved indifferentiability for 10 rounds but was not

published.
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The most impactful change to their 10-round simulator in order to reduce the number of
rounds to 8 is that they split the middle detect zone into two bigger middle detect zones
of three rounds each: {3, 4, 5} and {4, 5, 6}. If the middle detect zones were kept the same
(at rounds 4,5) then the queries that are adapated at those rounds would trigger new path
completions of themselves.

There is small modification in the detection and completion of chains in Dachman-Soled et
al. which makes the proofs a lot simpler. Their simulator operates in two phases, where in the
first phase it only enqueues all partial chains which it thinks that will require completion and
in the second phase it actually completes the chains and detects-enqueues only the middle
detect zone. Secondly, in terms of the 4-round buffer zone, they allow the simulator to first
complete the chains with the property that one of the set uniform positions has already been
assigned.

We will now give an informal overview of the simulator. We denote by F1, . . . , F10 the
round functions by F (i, x) we denote the query on x for function Fi. Whenever a query is
issued, the simulator stores the query and the answer in the form of a pair (x, y) in 10 tables
G1, . . . , G10. When the simulator sees a query, F (i, x) by the distinguisher it checks whether
it’s in table Gi and returns the stored value y. If it’s a j-th new query, the simulator adds x
to the set Aji .

Then the simulator checks whether i is one of the values {1, 2, 5, 6, 9, 10} which are the
endpoints of the detect zones and if that is the case, checks if there are new partial chains of
the form (x9, x10, 9), (x1, x2, 1), and (x5, x6, 5) that need to be enqueued. If it can’t find any
new partial chains then it picks a value uniformly at random and sets Gi(x) to that value
and returns it.

If it detects new partial chains that are enqueued in Qenq then the simulator tries to
evaluate them in a forward and backward sense as much as possible without setting any
values in the table Gi′ .

Example. Say that the simulator stopped at xi′ /∈ Gi′ . The simulator will add xi′
to Aji′ and will check if i belongs to any of the detect zone endpoints. From there, it
will detect if (xi′ , i

′) forms any additional partial chains and will enqueue them. This
process is repeated until no partial chains are detected.

There are five queues that are being used to enqueue the chains for completion in that
previous step: Q1, Q5, Q6, Q10, Qall. The chains that are enqueued in Q1, Q5, Q6, Q10 are those
that have the weak set uniform property which is what we discussed before: allow the simulator
to first complete the chains with the property that one of the set uniform positions has
already been assigned. More concretely, if we have a chain C = (xk, xk+1, k, l, g, b) that is
enqueued to be adapted at position l, which means that the adapt positions in this case are l
and l + 1 while the set uniform positions are l − 1 and l + 2 with the set uniform position
that is adjacent to the query that caused C to be enqueued being at “good” set uniform
position g and the other “set uniform” position at b. Note that b indexes the queues, Qb. C
is enqueued in Qb if the value at the bad set uniform position b, xb is not in Gb.

The first chains that are completed are the ones that are enqueued in the {Qb} queues.
The simulator will evaluate the chain forward and backwards setting uniformly random values
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at Gi(xi) that encounters and hasn’t seen before. In the 4-round buffer that has the set
uniform positions and the adapt positions, the simulator sets the values of the set uniform
positions uniformly at random and forces the values at the adapt positions to be consistent
with those of a random permutation.

When the simulator is done with the chains enqueued in {Qb} the simulator completes
the chains in Qall. The process is the same except that in this case the simulator detects
partial chains of the form (x5, x6, 5) and enqueues them in the queue Qmid.

The last step is to complete all the chains in Qmid and return the answer Gi(x) to the
query F (i, x).

A natural observation that can be made is that indifferentiability results seem to proven
for an even number of rounds. The answer for this is not definite and it probably has to do
with the way the simulators are constructed. There is symmetry in the Feistel construction
so the way the simulators of the papers described above work, we would have to adapt two
queries each time. So starting with the initial proof of 14 rounds, each time there is a 2 round
improvement.

5.2 Indifferentiability of SPNs

After having extensivelly surveyed the area of Feistel constructions, we switch our focus to
the SPN paradigm. SPNs seem more important at the moment because of the immense usage
of AES in practically every communication. Surprisingly, we have very few results on the
security of SPNs.

Andreeva et al. [ABD+13], proved the indifferentiability of a 5-round key-alternating
cipher from an ideal cipher in the random permutation model, where the key derivation
function sets all rounds keys ki = f(K) where f is a random oracle. The importance of this
design is that AES can be viewed as a 10-round key alternating cipher.

Let us define key-alternating ciphers before we present the main theorem:

Definition 5. A key-alternating cipher, KAt has t fixed permutations P1, ..., Pt on n bits,
separated by key addition:

KAt(K,m) = kt ⊕ (Pt (...k2 ⊕ P2 (k1 ⊕ P1 (k0 ⊕m))) ...)

where the keys k0, ..., kt are called round keys and they are derived by the master key K
according to some key schedule.

In the random permutation model, provable security results for this construction were first
obtained for t = 1 round by Even and Mansour [EM91], who showed that the block cipher
encrypting x into k1 ⊕ P1(k0 ⊕ x), where k0 and k1 are independent n-bit keys, is secure up
to O(2n/2) queries of the adversary. For this reason, this construction is often referred to as
the Even-Mansour cipher.

In addition to the main result, Andreeva et al. also give attacks against KA1, KA2, KA3.
The attack for KA1 is conceptually similar to the attacks on KA2 and KA3, but less involved.
The claim is that KA1(K, x ⊕ k0) ⊕ k1 = KA1(K

′, x ⊕ k′0) ⊕ k′1 for any x,K,K ′ where
f(K) = (k0, k1) is an arbitrary key schedule.
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Notice that in the real world, KA1(K, x⊕ k0)⊕ k1 = P1(x⊕ k0 ⊕ k0)⊕ k1 ⊕ k1 = P (x)
and similarly this is the case for K ′ so the equality holds with probability 1. In the ideal
world, ideal cipher queries for (K, x⊕ k0) and (K ′, x⊕ k′0) return u = IC(x⊕ k0)⊕ k1 and
v = IC(x⊕ k′0)⊕ k′1 the probability that u = v is negligible for distinct keys K,K ′. Thus, an
adversary can distinguish between the two worlds.

The main result of this work is the following:

Theorem 5. Let P1, . . . , P5 be independent random n-bit permutations and f be a random
function. Let D be an arbitrary, information-theoretic distinguisher that makes at most q
queries. Then there exists a simulator S such that:

Advindif
KA5,IC,S (D) ∈ O

(
q10

2n

)
where S makes at most 2q2 queries to the ideal cipher IC and runs in time O (q3).

As usual the proof starts from the real world and through a sequence of indinstinguishable
changes, reaches the ideal world. A novelty of this work is that the probability of distinguishing
between two worlds is not bounded with bad events. In places where a bad event flag might
traditionally be used, the code simply aborts instead.

In Holestein et al. the map preserves exactly the probability of the execution and its
image. In this work, the requirement is relaxed to nearly equal probability. This offers a more
efficient and natural approach making the proof simpler. In addition, this work only considers
the probability space that induced by the random footprints23 instead of all possible random
tapes. The rest, such as working with a distinguisher that completes all chains, is the same
as the work of Holestein et al. The main lemma stated formally is:

Lemma 3. For all n and all distinguishers D that interact either with W2 or W3, issuing at
most q queries we have:

Pr[DW2 = 1]− Pr[DW3 = 1] ≤ 160q10/2n + 81q4/2n

which is proven by the use of four other lemmas that span 12 pages.
To overcome the problem of the simulator-termination argument, i.e. to prove that the

simulator has polynomial complexity, the authors utilize the concept of the “tripwire”24.
A tripwire is an ordered pair (i, i+1) or (i+1, i) or (1, 5) or (5, 1) for a 5-round cipher. If a

tripwire (i, j) is placed then the simulator will complete paths when it detects k-adjacencies25

between positions i and j. If a tripwire is triggered, the simulator completes the relevant

23 If α = (rf , p1, ..., p5, pE) is a W2 random tuple, the footprint of α consists of that portion of the random
tapes actually read during the execution DW2(α).

24 The idea is due to [CPS08] but the term is new.
25 We call k-adjacent a pair of queries (1, x1, y1), (5, x5, y5) if k ∈ Z and E(f−1(k), x1 ⊕ k) = y5 ⊕ k. A

sequence of queries (1, x1, y1), (2, x1, y2), . . . , (5, x5, y5) for which there exists a k ∈ Z such that each
adjacent pair is k-adjacent and such that the first and last queries are also k-adjacent is called a completed
k-path or completed k-chain.
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chains and recursively completes chains for other potentially triggered tripwires; else it does
nothing.

Dodis et al. [DSSL16] studied the indifferentiability of confusion-diffusion networks (which
can be viewed as unkeyed SPNs). They proved that a constant round of confusion-diffusion
rounds is sufficient to extend the domain of a public random permutation. The underlying
permutations are modeled as both random and independent, a condition which seems justified
by the fact that the proofs are already very involved. The simulator categorizes the confusion
and diffusion rounds into 9 zones of four different types: one middle detect zone, left and
right outer detect zones, four untangle zones, and two adapt zones.

Each one of them has one or more contiguous rounds and/or diffusion permutations,
where every round and every diffusion permutation belongs to exactly one zone. There are
three important takeaway points from this work. First, the security of the simulator is a
function of the middle detect zone. Second, the query complexity is determined by the left
outer detect zone and by the middle detect zone. Finally, the diffusion permutations must
have low conductance.

Improving on [CS14], in which only asymptotically tight bounds were proven, in the
indistiguishability setting, exact bounds on the security of key-alternating ciphers were given
by Hoang and Tessaro [HT16], who showed that the r-round Even-Mansour construction
is secure up to roughly 2rn/(r+1) adversarial queries, when the public S-boxes are uniformly
random and independent permutations and the round keys are independent.

We will provide the main combinatorial lemma from [CS14] because it is of independent
importance and it is used in other works as a tool. This is a lengthy and complicated lemma
so we need to first describe the setup.

Let G be a graph with r + 1 shores26 equal to {0, 1}n indexed 0, 1, . . . , r. The edges of G
are divided into r sets E1, . . . , Er where Ei is a (partial) matching between shores i− 1 and
i. We define Uij for 0 ≤ i < j ≤ r to be the set of paths from shore i to shore j of G such
that the vertex in shore i is left-free27, but where the vertex in shore j may or may not be
right-free.

For 0 ≤ i ≤ r we let ui be a vertex chosen uniformly at random from the set of left-free
vertices in shore i. The choice of u1, . . . , ur defines a path w0, w1, . . . , wr in the following way:
we set w0 = u and

wi =

{
y if there exists an edge(wi−1, y) ∈ Ei
ui otherwise

We write PrG[u→ v] = PrG[wr = v] for the probability that we arrive at vertex v in shore r
by following this path.

26 We associate to transcript τ a graph G(τ), which encodes the information contained in the key as well as
in the permutations. G(τ) has 2(t+ 1)2n vertices, grouped into “shores” of size 2n each, with each shore
being identified with a copy {0, 1}n

27 A vertex in shore i ≥ 1 is left-free if it is not adjacent to a vertex in shore i− 1.
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Lemma 4. Let G and Uij as described above. Then,

Pr
G

[u→ v] =
1

N
− 1

N

∑
σ

(−1)|σ|
|σ|∏
j=1

|Uijij−1
|

N − |Eij |

The most significant contribution of [HT16] is not the result itself but an extension to
the famous “H-coefficients” technique which started with [Pat91] and was heavily used by
Chen and Steinberger in [CS14]. The extension is named the expectation method and a high
level overview is provided in the following paragraph.

An important component for the expectation method is what the authors call point-wise
proximity. That is, they show that for all possible transcripts τ , there exists an ε = ε(q) such
that for probabilities p0(τ) (resp. p1(τ)) that the ideal world (resp. the real world) answer
consistently with τ satisfy:

p0(τ)− p1(τ) ≤ ε · p0(τ)

This means that that distinguishing advantage of any D is at most ε.
Point-wise proximity makes classical proofs techniques, like hybrid arguments and reduc-

tions, transcript-centric.

Example. If we have worlds with probabilities p0 and p1 such that the previous
inequality has been established, and we want to prove the same inequality for some
other p′0 p

′
1 all we have to do is create a mapping φ such that:

p′1(τ)

p′0(τ)
=
p1(φ(τ))

p0(φ(τ))

Although there is an exact formula for ε(τ) in [CS14], ε depends on τ so in order to get a
sharp bound, the authors increase the set of bad transcripts to include the ones that deviate
a lot from their expectation and show a unique bound ε∗ ≥ ε(τ) for all good transcripts.
In the absence of sharp concentration bounds, only Markov’s inequality can be used so the
bounds are not tight at all. To combine this with point-wise proximity Hoang and Tessaro
use this ε that depends on the transcript for which the inequality holds and then, since the
ideal world distribution is simple, replace the “better” ε∗ with the expected value of ε(τ).

More recently began of the study of SPNs as strong pseudorandom permutations where
the underlying permutation is considered public [CDK+18]. When the permutation step is
linear, as in the widely deployed AES, the authors give a general attack against any 2-round
linear SPN when w ≥ 2 and most importantly prove that 3-round linear SPNs are secure for
all w if the underlying keyed permutations contain no zero entries and the first and last key
are uniform.

Informally, the first and last rounds of a 3-round linear SPN can be thought of as blockwise
universal permutations28. These proofs critically use the H-coefficients technique [Pat91]

28 A keyed permutation π is blockwise universal if the following probabilities over uniform key k are small:
(1) For any distinct x, x′, π(k, x) = π(k, x′). (2) Two distinct blocks of π(k, x) are equal. (3) π(k, x) = c
for a constant c
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where they upper bound the probability of obtaining a bad transcript in the ideal world,
which yields a final upper bound in the advantage of the distinguisher.

For the non-linear case, the following theorem is proved:29

Theorem 6. Let δ, δ
′
> 0, and let n and w be positive integers such that w ≥ 2. Let T be a

(δ, δ
′
)-super blockwise universal tweakable permutation. Then for any integers p and q such

that wp+ 3w2q < 2n/2 one has:

AdvSPT (p, q) ≤ w2q (δ′p+ δwq) (3δ′p+ 3δwq + 2δ′wp) +
q2

2wn
+
q (2wp+ 6w2q)

2

22n

which gives “beyond-birthday” security (for up to 2n/3 queries) for 2-round non-linear
SPNs (with independent S-boxes and keys in different rounds). The proof relies on the
modified version of the “H-coefficients” technique used in [HT16] and was described above.

6 Open Problems - Future work

There are some very interesting problems that we can identify after surveying this area. One
obvious question would be whether we can prove indifferentiability of 6-rounds (or 7-rounds)
Feistel constructions. An answer to this (for 6 rounds) would “match” the lower bound,
since we know that 5 rounds are not enough, and would effectively close the chapter of
indifferentiability of Feistel constructions.

Turning our focus to the less studied SPNs, one open question is whether r-round non-
linear SPNs are enough to prove security up to O

(
2rn/(r+1)

)
. In addition, we would like to

show beyond birthday security bounds for linear SPNs with r ≥ 3 because they are the ones
that are used in practice. Finally, on this direction, we want to prove tight security bounds
and matching attacks for r-round linear and non-linear SPNs.

Inspired by the work of Miles and Viola, we should think about other choices of S-boxes
apart from inversion because they might lead to more efficient constructions. By using other
properties of linear transformation (other than the maximal-branch-number) we might be
able to get stronger proofs of security. Combining these, could give a SPN that is computable
by O(n) size circuits.

Our ultimate goal would be able to construct even smaller primitives to build secure
cryptographic cryptosystems. The motivation behind this idea can be seen since the early
days and particularly the DES construction. DES, which is based on the Feistel construction,
starts with r simple pseudorandom functions and by composing them, it achieves a specific
level of security.

So if we start with a set of simple permutations30 and we compose them for some number
of times we seem to get a permutation that looks random. The question is: how many
times do we need to compose those “simple” permutations in order to get a pseudorandom
permutation? For some cases, the notion of pseudorandomness can be too much so we can
relax it by asking how close the resulting permutation is to being k-wise independent.

29 For easier parsing we note that SPT is an r-round SPN based on a keyed tweakable permutation T
30 By “simple” we mean that each output bit is only affected by a small part of the input.
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Towards this research area we have the results of Hoory et al. [HMMR04] which give
a bound on the number of times that simple permutations need to be composed in order
for the resulting permutation to be “close” to being k-wise independent. Their result of
Õ (n3k3) compositions improves on the result of Gowers [Gow96] who had proved it for
Õ (n3k(n2 + k)(n3 + k)) compositions 31.

The main idea in this line of work is to pick a very small number of bits that the
permutation is going to change. To be precise, that number is 3 so these bits can define
a cube consisting of eight elements. It is important to note here that the number of these
permutations O(n3) is much smaller than the number of all possible permutations which is
(2n)!. A permutation on this small cube is selected uniformly at random. It is then shown
we do not need many compositions of these simple permutations in order to get a k-wise
almost independent permutation. This means that for any x1, . . . , xk distint elements of a
permutation π, the values π(x1), . . . , π(xk) are almost uniformly distributed.

Another conceptual contribution of [HMMR04] is the introduction of strong closeness
to k-wise independence which in accordance to the works that we have surveyed, involves
computationally unbounded adversaries. The adversary’s task is to distinguish whether a
permutation π that they are given oracle access to is a truly random permutation by issuing
at most k queries.

Our hope is to build on this idea or even create different, more efficient primitives that
can be used as building blocks for practical cryptosystems.

31 Brodsky and Hoory later improved this bound [BH08].
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